{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Calibrating your Detector for Energy Response" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Experimental Set up\n", "\n", "| Experimental Item | Description |\n", "| -------- | ------- |\n", "| Detectors | 2x Scionix 38 B 37 1.5M - E1 PMT |\n", "| Detector Bias | 500 Volts (for both) |\n", "| Source Type | Spectrum Techniques Cs137 |\n", "| Source Activity | 5 uCi |\n", "| Source Manufacture Date | May 2017 |\n", "| Source Half Life | 30.1 yrs |\n", "| Cables | 50 Ohm LEMO - 10ns length |\n", "| Vireo Input Termination | 50 Ohm |\n", "\n", "*add picture of setup*\n", "\n", "*add Diagram of setup*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Calibrating your Detector for Energy Response (Cs137)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Setting up Environment\n", "\n", "We're going to define some variables up front so they are easier to change later. `TRIGGER_SENSITIVITY` defines how sensitive the trigger is to capture a pulse. `NUMBER_OF_EVENTS` indicates how many events we are going to capture before stopping data collection" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "___\n", "\n", "## Collecting Data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Skutils is in beta, please contact support@skutek.com with bugs, issues, and questions\n" ] } ], "source": [ "%matplotlib inline\n", "import skutils\n", "import math\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import scipy\n", "\n", "plt.rcParams[\"figure.figsize\"] = [20, 9]\n", "\n", "# VIREO_URL = \"192.168.128.154\"\n", "VIREO_URL = \"vireo-000019.tek\"\n", "# VIREO_URL = \"192.168.7.2\" # USB IP address by default if using USB - This does not change\n", "TRIGGER_SENSITIVITY = 5\n", "NUMBER_OF_EVENTS = 10_000\n", "EXPERIMENT_NAME = \"Cs137_Energy_Calibration\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1) Connect to your FemtoDAQ Vireo\n", "\n", "We can use the `FemtoDAQController` class to control our digitizer remotely in this python script. The FemtoDAQ Controller contains functions to control trigger, data capture, and recording configuration. We will use it here to configure our trigger parameters." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "vireo = skutils.FemtoDAQController(VIREO_URL)\n", "print(vireo.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3) Configure Data Recording Parameters\n", "\n", "Before capturing data, we need to configure the instrument to trigger at the appropriate level \n", "\n", "\n", "{{EXPERIMENT_NAME}}" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# load default trigger settings so we know that we're starting changing settings from a known parameter set\n", "vireo.loadDefaultConfig()\n", "\n", "# Configuring Trigger Settings\n", "vireo.setTriggerSensitivity(0, TRIGGER_SENSITIVITY)\n", "vireo.setTriggerSensitivity(1, TRIGGER_SENSITIVITY)\n", "vireo.setTriggerXPosition(128)\n", "vireo.setInvertADCSignal(0, True)\n", "vireo.setInvertADCSignal(1, True)\n", "vireo.setTriggerAveragingWindow(0, 16)\n", "vireo.setTriggerAveragingWindow(1, 16)\n", "# Bring baseline to roughly zero - these number will vary depending on your unit.\n", "vireo.setDigitalOffset(0, 660)\n", "vireo.setDigitalOffset(1, 660)\n", "\n", "vireo.setHistogramScaling(0, 1)\n", "vireo.setHistogramScaling(1, 1)\n", "\n", "# Enabling Triggers\n", "vireo.setEnableTrigger(0, True)\n", "vireo.setEnableTrigger(1, True)\n", "\n", "# Configuring Pulse Windows\n", "vireo.setPulseHeightAveragingWindow(8)\n", "vireo.setTriggerActiveWindow(32)\n", "vireo.setPulseHeightWindow(32)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Collecting Data without Coincidence Filtering" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Configure Recording on CH0, CH1\n", "vireo.configureRecording(\n", " channels_to_record=[0, 1],\n", " number_of_samples_to_capture=512,\n", " file_recording_name_prefix=EXPERIMENT_NAME,\n", " file_recording_format=\"igorph\",\n", " file_recording_data_output=\"pulse_summaries\",\n", " only_record_triggered=True,\n", ")\n", "\n", "# Configuring Coincidence\n", "vireo.configureCoincidence(\"multiplicity\", 1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Start Waveform Capture" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Vireo-000019 (http://vireo-000019.tek): collected 6753 out of 10000 events (67.5% complete) events. running time: 2.0sec\n", "Vireo-000019 (http://vireo-000019.tek): collected 6753 out of 10000 events (67.5% complete) events. running time: 2.8sec\n", "Vireo-000019 (http://vireo-000019.tek): collected 9999 out of 10000 events (100.0% complete) events. running time: 3.8sec\n", "Vireo-000019 (http://vireo-000019.tek): Data Collection Complete\n" ] } ], "source": [ "vireo.clearTimestamp()\n", "vireo.start(NUMBER_OF_EVENTS)\n", "# Wait for data to be collected up to a maximum of 5 minutes\n", "timed_out = vireo.waitUntil(nevents=NUMBER_OF_EVENTS, timeout_time=300, print_status=True)\n", "vireo.stop()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4) Download Data Files for Later Analysis" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Vireo-000019 (http://vireo-000019.tek) Controller : downloaded `Cs137_Energy_Calibration_03.56.54PM_Apr23_2025_seq000001.itx` to '/home/skutek/app-notes/skutils-app-notes/Experiments/Cs137_Energy_Calibration/Cs137_Energy_Calibration_03.56.54PM_Apr23_2025_seq000001.itx'\n" ] } ], "source": [ "files = vireo.downloadLastRunDataFiles()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 5) Grab Pulse Heights from all events\n", "\n", "First we are going to grab the pulse heights calculated by our firmware DSP. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Skutils loader to display histogram from downloaded files\n", "pulse_heights = []\n", "ch0_ph = []\n", "ch1_ph = []\n", "for filename in files:\n", " loader = skutils.IGORPulseHeightLoader(filename)\n", " # loader = skutils.GretinaLoaderme)\n", " for chan_data in loader.channelByChannel():\n", " if chan_data.channel == 0:\n", " ch0_ph.append(chan_data.pulse_height)\n", " elif chan_data.channel == 1:\n", " ch1_ph.append(chan_data.pulse_height)\n", "\n", "pulse_heights = np.asarray(pulse_heights)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 6) Calculate a histogram using Numpy" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "bin_width = 4\n", "bin_edges = np.arange(0, 2000, bin_width)\n", "hist_bins = (bin_edges[:-1] + bin_edges[1:]) / 2\n", "hist0, edges0 = np.histogram(\n", " ch0_ph,\n", " bins=bin_edges,\n", ") # range=(hist_bins.min(), hist_bins.max()))\n", "hist1, edges1 = np.histogram(\n", " ch1_ph,\n", " bins=bin_edges,\n", ") # range=(hist_bins.min(), hist_bins.max()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9989\n", "9819\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABkUAAAL1CAYAAAB5beM2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8sElEQVR4nOzdeXxU9b0//ndYFYSgoiyKonWNVVAJiq0WFUWlVlDr0rpRl3obtEpdwLX2Wmu17UXrtHbza3tbl67Wlmrr9dbaWi1xAYVYd724ACKVCMqWfH5/8MuUSAIJmcnMMM/n48EDMnM488o5nzlz5rzP5/OpSCmlAAAAAAAA2Mh1KXQAAAAAAACAzqAoAgAAAAAAlAVFEQAAAAAAoCwoigAAAAAAAGVBUQQAAAAAACgLiiIAAAAAAEBZUBQBAAAAAADKQrdCB2ivxsbGePPNN6NPnz5RUVFR6DgAAAAAAEABpZTivffei8GDB0eXLuvuC1JyRZE333wzhgwZUugYAAAAAABAEZk7d25su+2261ym5Ioiffr0iYjVv1zfvn0LnAYAAAAAACik+vr6GDJkSLZ+sC4lVxRpGjKrb9++iiIAAAAAAEBERJum3DDROgAAAAAAUBYURQAAAAAAgLJQMkWRTCYTVVVVUV1dXegoAAAAAABACapIKaVCh2iP+vr6qKysjMWLF5tTBAAAAACAVjU0NMTKlSsLHYMO6t69e3Tt2rXV59tTNyi5idYBAAAAAGBdUkoxb968ePfddwsdhRzp169fDBw4sE2Tqa+LoggAAAAAABuVpoLI1ltvHb169erwhXQKJ6UU77//fixYsCAiIgYNGtSh9SmKAAAAAACw0WhoaMgWRLbccstCxyEHNt1004iIWLBgQWy99dbrHEprfUpmonUAAAAAAFifpjlEevXqVeAk5FLT/uzoHDGKIgAAAAAAbHQMmbVxydX+VBQBAAAAAADKQskURTKZTFRVVUV1dXWhowAAAAAAACWoZCZar6mpiZqamqivr4/KyspCxwEAAAAAoMQMnTK9017r1evH5XZ9r74aO+ywQzz11FMxfPjwnK47H0aPHh3Dhw+PadOmFTpKMyXTU4TSN3TK9OwfAAAAAADK20MPPRT77LNP9OzZM3baaae4/fbb8/6aiiIAAAAAAECneuWVV2LcuHFx8MEHx8yZM+OCCy6Is846K/74xz/m9XUVRQAAAAAAoAg0NjbGDTfcEDvttFP07Nkztttuu/jqV7/abJmXX345Dj744OjVq1cMGzYsHn300exz77zzTpx88smxzTbbRK9evWLPPfeMO++8s9n/Hz16dJx//vlxySWXxBZbbBEDBw6ML3/5y82WqaioiB/+8IcxYcKE6NWrV+y8885x7733Nltm9uzZceSRR8Zmm20WAwYMiFNPPTUWLlzY5t/11ltvjR122CG++c1vxu677x6TJk2K448/Pv7rv/6rzevYEIoiAAAAAABQBKZOnRrXX399XHnllVFXVxd33HFHDBgwoNkyl19+eVx00UUxc+bM2GWXXeLkk0+OVatWRUTEsmXLYt99943p06fH7Nmz45xzzolTTz01ZsyY0WwdP/7xj6N3797xj3/8I2644Yb4yle+Eg888ECzZa655po44YQT4umnn46jjjoqPvvZz8aiRYsiIuLdd9+NQw45JPbee+94/PHH4/7774/58+fHCSec0Obf9dFHH40xY8Y0e2zs2LHNijz5UDITrQMAAAAAwMbqvffei5tuuiluueWWOP300yMi4iMf+Uh8/OMfb7bcRRddFOPGrZ7E/Zprrok99tgjXnzxxdhtt91im222iYsuuii77HnnnRd//OMf4+c//3mMHDky+/hee+0VV199dURE7LzzznHLLbfEgw8+GIcddlh2mTPOOCNOPvnkiIi47rrr4uabb44ZM2bEEUccEbfcckvsvffecd1112WXv+2222LIkCHx/PPPxy677LLe33fevHlrFXwGDBgQ9fX18cEHH8Smm27apu3WXooiAAAAAABQYM8++2wsX748Dj300HUut9dee2X/PWjQoIiIWLBgQey2227R0NAQ1113Xfz85z+PN954I1asWBHLly+PXr16tbqOpvUsWLCg1WV69+4dffv2zS4za9as+POf/xybbbbZWvleeumlNhVFCkVRBAAAAAAACqytPSO6d++e/XdFRUVErJ6LJCLixhtvjJtuuimmTZsWe+65Z/Tu3TsuuOCCWLFiRavraFpP0zrassySJUvi6KOPjq9//etr5Wsq1KzPwIEDY/78+c0emz9/fvTt2zdvvUQiFEUAAAAAAKDgdt5559h0003jwQcfjLPOOmuD1vHII4/EMcccE6ecckpErC6WPP/881FVVZXLqLHPPvvEr371qxg6dGh067ZhZYZRo0bFH/7wh2aPPfDAAzFq1KhcRGxVyUy0nslkoqqqKqqrqwsdBQAAAAAAcmqTTTaJSy+9NC655JL4yU9+Ei+99FI89thj8aMf/ajN69h5553jgQceiL///e/x7LPPxuc///m1emPkQk1NTSxatChOPvnkqK2tjZdeein++Mc/xsSJE6OhoaFN6zj33HPj5ZdfjksuuST++c9/xne+8534+c9/HhdeeGHO866pZHqK1NTURE1NTdTX10dlZWWh4wAAAAAAUGJevX5coSOs05VXXhndunWLq666Kt58880YNGhQnHvuuW3+/1dccUW8/PLLMXbs2OjVq1ecc845MX78+Fi8eHFOcw4ePDgeeeSRuPTSS+Pwww+P5cuXx/bbbx9HHHFEdOnStr4YO+ywQ0yfPj0uvPDCuOmmm2LbbbeNH/7whzF27NicZv2wipRSyusr5FhTUWTx4sXRt2/fQsehHYZOmZ79d7EffAAAAACA0rRs2bJ45ZVXYocddohNNtmk0HHIkXXt1/bUDUpm+CwAAAAAAICOUBQBAAAAAADKgqIIAAAAAABQFhRFAAAAAACAsqAoAgAAAADARielVOgI5FCu9qeiCAAAAAAAG43u3btHRMT7779f4CTkUtP+bNq/G6pbLsIAAAAAAEAx6Nq1a/Tr1y8WLFgQERG9evWKioqKAqdiQ6WU4v33348FCxZEv379omvXrh1an6IIAAAAAAAblYEDB0ZEZAsjlL5+/fpl92tHKIoAAAAAALBRqaioiEGDBsXWW28dK1euLHQcOqh79+4d7iHSRFEEAAAAAICNUteuXXN2MZ2Ng4nWAQAAAACAslAyRZFMJhNVVVVRXV1d6CgAAAAAAEAJKpmiSE1NTdTV1UVtbW2howAAAAAAACWoZIoiAAAAAAAAHaEoAgAAAAAAlAVFEQAAAAAAoCwoigAAAAAAAGVBUQQAAAAAACgLiiIAAAAAAEBZUBQBAAAAAADKgqIIAAAAAABQFhRFAAAAAACAsqAoAgAAAAAAlAVFEQAAAAAAoCwoigAAAAAAAGVBUQQAAAAAACgLiiIAAAAAAEBZUBQBAAAAAADKgqIIAAAAAABQFjq9KPLuu+/GiBEjYvjw4fHRj340fvCDH3R2BAAAAAAAoAx16+wX7NOnTzz88MPRq1evWLp0aXz0ox+NY489NrbccsvOjgIAAAAAAJSRTu8p0rVr1+jVq1dERCxfvjxSSpFS6uwYAAAAAABAmWl3UeThhx+Oo48+OgYPHhwVFRVxzz33rLVMJpOJoUOHxiabbBL77bdfzJgxo9nz7777bgwbNiy23XbbuPjii6N///4b/AsAAAAAAAC0RbuLIkuXLo1hw4ZFJpNp8fm77747Jk+eHFdffXU8+eSTMWzYsBg7dmwsWLAgu0y/fv1i1qxZ8corr8Qdd9wR8+fP3/DfAAAAAAAAoA3aXRQ58sgj49prr40JEya0+Py3vvWtOPvss2PixIlRVVUVt956a/Tq1Stuu+22tZYdMGBADBs2LP7617+2+nrLly+P+vr6Zn8AAAAAAADaK6dziqxYsSKeeOKJGDNmzL9foEuXGDNmTDz66KMRETF//vx47733IiJi8eLF8fDDD8euu+7a6jq/9rWvRWVlZfbPkCFDchkZAAAAAAAoEzktiixcuDAaGhpiwIABzR4fMGBAzJs3LyIiXnvttTjwwANj2LBhceCBB8Z5550Xe+65Z6vrnDp1aixevDj7Z+7cubmMDAAAAAAAlIlunf2CI0eOjJkzZ7Z5+Z49e0bPnj3zFwgAAAAAACgLOe0p0r9//+jatetaE6fPnz8/Bg4cmMuXAgAAAAAAaJecFkV69OgR++67bzz44IPZxxobG+PBBx+MUaNGdWjdmUwmqqqqorq6uqMxAQAAAACAMtTu4bOWLFkSL774YvbnV155JWbOnBlbbLFFbLfddjF58uQ4/fTTY8SIETFy5MiYNm1aLF26NCZOnNihoDU1NVFTUxP19fVRWVnZoXUBAAAAAADlp91FkccffzwOPvjg7M+TJ0+OiIjTTz89br/99jjxxBPj7bffjquuuirmzZsXw4cPj/vvv3+tydfhw4ZOmZ7996vXjytgEgAAAAAANkbtLoqMHj06UkrrXGbSpEkxadKkDQ4FAAAAAACQazmdUySfzCkCAAAAAAB0RMkURWpqaqKuri5qa2sLHQUAAAAAAChBJVMUAQAAAAAA6AhFEQAAAAAAoCyUTFHEnCIAAAAAAEBHlExRxJwiAAAAAABAR5RMUQQAAAAAAKAjuhU6AAydMr3QEQAAAAAAKAN6igAAAAAAAGVBUQQAAAAAACgLJVMUyWQyUVVVFdXV1YWOAgAAAAAAlKCSmVOkpqYmampqor6+PiorKwsdhzYyXwgAAAAAAMWiZHqKAAAAAAAAdISiCAAAAAAAUBYURQAAAAAAgLKgKAIAAAAAAJSFkimKZDKZqKqqiurq6kJHAQAAAAAASlDJFEVqamqirq4uamtrCx0FAAAAAAAoQSVTFAEAAAAAAOgIRREAAAAAAKAsKIoAAAAAAABlQVEEAAAAAAAoC4oiAAAAAABAWVAUAQAAAAAAykLJFEUymUxUVVVFdXV1oaMAAAAAAAAlqGSKIjU1NVFXVxe1tbWFjgIAAAAAAJSgkimKAAAAAAAAdISiCAAAAAAAUBYURQAAAAAAgLKgKAIAAAAAAJQFRREAAAAAAKAsKIoAAAAAAABlQVEEAAAAAAAoC4oiAAAAAABAWSiZokgmk4mqqqqorq4udBQAAAAAAKAElUxRpKamJurq6qK2trbQUQAAAAAAgBJUMkURAAAAAACAjuhW6ADQkqFTpmf//er14wqYBAAAAACAjYWeIgAAAAAAQFlQFAEAAAAAAMqCoggAAAAAAFAWFEUAAAAAAICyoCgCAAAAAACUBUURAAAAAACgLCiKAAAAAAAAZUFRBAAAAAAAKAuKIgAAAAAAQFlQFAEAAAAAAMpCyRRFMplMVFVVRXV1daGjAAAAAAAAJahkiiI1NTVRV1cXtbW1hY4CAAAAAACUoJIpigAAAAAAAHSEoggAAAAAAFAWFEUAAAAAAICyoCgCAAAAAACUBUURAAAAAACgLCiKAAAAAAAAZUFRBAAAAAAAKAuKIgAAAAAAQFlQFAEAAAAAAMqCoggAAAAAAFAWFEUAAAAAAICyoCgCAAAAAACUBUURAAAAAACgLCiKAAAAAAAAZUFRBAAAAAAAKAuKIgAAAAAAQFno9KLI3LlzY/To0VFVVRV77bVX/OIXv+jsCAAAAAAAQBnq1ukv2K1bTJs2LYYPHx7z5s2LfffdN4466qjo3bt3Z0cBAAAAAADKSKcXRQYNGhSDBg2KiIiBAwdG//79Y9GiRYoitGrolOnZf796/bgCJgEAAAAAoJS1e/ishx9+OI4++ugYPHhwVFRUxD333LPWMplMJoYOHRqbbLJJ7LfffjFjxowW1/XEE09EQ0NDDBkypN3BAQAAAAAA2qPdRZGlS5fGsGHDIpPJtPj83XffHZMnT46rr746nnzyyRg2bFiMHTs2FixY0Gy5RYsWxWmnnRbf//73Nyw5AAAAAABAO7R7+KwjjzwyjjzyyFaf/9a3vhVnn312TJw4MSIibr311pg+fXrcdtttMWXKlIiIWL58eYwfPz6mTJkSBxxwwDpfb/ny5bF8+fLsz/X19e2NDAAAAAAA0P6eIuuyYsWKeOKJJ2LMmDH/foEuXWLMmDHx6KOPRkRESinOOOOMOOSQQ+LUU09d7zq/9rWvRWVlZfaPobYAAAAAAIANkdOiyMKFC6OhoSEGDBjQ7PEBAwbEvHnzIiLikUceibvvvjvuueeeGD58eAwfPjyeeeaZVtc5derUWLx4cfbP3LlzcxkZAAAAAAAoE+0ePqujPv7xj0djY2Obl+/Zs2f07Nkzj4kAAAAAAIBykNOeIv3794+uXbvG/Pnzmz0+f/78GDhwYC5fCgAAAAAAoF1yWhTp0aNH7LvvvvHggw9mH2tsbIwHH3wwRo0a1aF1ZzKZqKqqiurq6o7GBAAAAAAAylC7h89asmRJvPjii9mfX3nllZg5c2ZsscUWsd1228XkyZPj9NNPjxEjRsTIkSNj2rRpsXTp0pg4cWKHgtbU1ERNTU3U19dHZWVlh9YFAAAAAACUn3YXRR5//PE4+OCDsz9Pnjw5IiJOP/30uP322+PEE0+Mt99+O6666qqYN29eDB8+PO6///61Jl8HAAAAAADoTO0uiowePTpSSutcZtKkSTFp0qQNDgUAAAAAAJBr7S6KFEomk4lMJhMNDQ2FjkIODJ0yvdARAAAAAAAoMzmdaD2fampqoq6uLmprawsdBQAAAAAAKEElUxQBAAAAAADoCEURAAAAAACgLJRMUSSTyURVVVVUV1cXOgoAAAAAAFCCSqYoYk4RAAAAAACgI0qmKAIAAAAAANARiiIAAAAAAEBZUBQBAAAAAADKgqIIAAAAAABQFkqmKJLJZKKqqiqqq6sLHQUAAAAAAChBJVMUqampibq6uqitrS10FAAAAAAAoASVTFEEAAAAAACgI7oVOgAAAADAmoZOmZ7996vXj1vv4wAAbaUoAgAAAJQshRIAoD0MnwUAAAAAAJSFkimKZDKZqKqqiurq6kJHAQAAAAAASlDJDJ9VU1MTNTU1UV9fH5WVlYWOA51Kd3AAAKBcrfl9CACgo0qmKALlxok/AABQTnwHAgA6g6IIAAAAUBAKIQBAZ1MUgSLiCwEAAAAAQP4oikCJMb8IAAAAAMCGURQBAAAAOpVe8gBAoXQpdAAAAAAAAIDOUDJFkUwmE1VVVVFdXV3oKAAAAAAAQAkqmeGzampqoqamJurr66OysrLQcQAAAIAiZj5GAKAlJVMUAQAAAEqLwgQAUGwURQAAAIC8M7k6AFAMFEWghLX0pcLdVwAAAAAALSuZidYBAAAAAAA6Qk8RAAAAoOS0Zzguc5sAAE30FAEAAAAAAMqCoggAAAAAAFAWDJ9FSdHlef1sIwAAAACAlpVMUSSTyUQmk4mGhoZCRwEAAACKUHvmGQEAylPJDJ9VU1MTdXV1UVtbW+goAAAAAABACSqZoggAAAAAAEBHKIoAAAAAAABlQVEEAAAAAAAoCyUz0ToAAABQnEppgvM1s756/bh2Pw8AlDZFEQAAAGCDlFIxBAAgwvBZAAAAAABAmVAUAQAAAAAAyoKiCAAAAAAAUBYURQAAAAAAgLJgonUokDUnJHz1+nEFTAIAANB2G9Pk6hvT7wIAtI2iCABQ9BSSAQAAgFwwfBYAAAAAAFAWSqanSCaTiUwmEw0NDYWOAgAAABul1npnGmYKANhYlExPkZqamqirq4va2tpCRwEAAAAAAEpQyfQUgY2Zu64AAAAAAPKvZHqKAAAAAAAAdISeIrARa208YIBcajrWtDbuuOMPH6Z9AFAqfGYBwMZHTxEAAAAAAKAs6CkCAMBGwd28AAAArI+eIgAAAAAAQFnQUwQA2GjvsN/Q3yvX26Mztu/Gug/Jr5bmBAIAANiY6SkCAAAAAACUBT1FANjotXYH/cZ+Z/2av19rNvT3bmndrb1ee7Z/WzLnwsa+7wGA3HP+AAAbBz1FAAAAAACAsqCnCHSizroDGlpra/m8o8249Ou3vmNAsWy7Yr8LshjzdXb7b882KMbtVcxsL6ActaW3JwDAxkJPEQAAAAAAoCwoigAAAAAAAGXB8FlQJgwHwsZsYxm6qy3v0/Utk89hLnKx7mIehqOYs7VXW34XnwuUG20eVvNeyI2N5fwTAMqRniIAAAAAAEBZUBQBAAAAAADKQkGGz5owYUI89NBDceihh8Yvf/nLQkQANmKGBKAcbejQTxvTkFEbqhi2QWsZHMOK/5je0vAp+czc2dujM16v2PdxsbCdAAAgNwrSU+SLX/xi/OQnPynESwMAAAAAAGWqIEWR0aNHR58+fQrx0gAAAAAAQJlq9/BZDz/8cNx4443xxBNPxFtvvRW/+c1vYvz48c2WyWQyceONN8a8efNi2LBh8e1vfztGjhyZq8zARizXQ0MUcqgJw1y0zfqGnllTrttEZ8jF6xXD8E751tHhv9rSfjZUa+/lll5nYzqGtabYMxXi/7Nu7WkzbXm/beg6cpkTNhaOfx3n2AEApafdPUWWLl0aw4YNi0wm0+Lzd999d0yePDmuvvrqePLJJ2PYsGExduzYWLBgQYfDAgAAAAAAbKh29xQ58sgj48gjj2z1+W9961tx9tlnx8SJEyMi4tZbb43p06fHbbfdFlOmTGl3wOXLl8fy5cuzP9fX17d7HQAAAAAAAO0uiqzLihUr4oknnoipU6dmH+vSpUuMGTMmHn300Q1a59e+9rW45pprchWRjUixdVMutjztVez5iz1fuWrPkAu52IfaAR1hiJD22dD395ryOXTRxrg/c7ENHBuBJhvjcRIAIBdyOtH6woULo6GhIQYMGNDs8QEDBsS8efOyP48ZMyY+/elPxx/+8IfYdttt11kwmTp1aixevDj7Z+7cubmMDAAAAAAAlImc9hRpq//5n/9p87I9e/aMnj175jENAAAAAABQDnLaU6R///7RtWvXmD9/frPH58+fHwMHDszlSwEAAAAAALRLTnuK9OjRI/bdd9948MEHY/z48RER0djYGA8++GBMmjSpQ+vOZDKRyWSioaEhB0lhbU1j7hqLO/fzNnTGPBCFHjN5fe1nQ7dBLsbpL6RczEnQ2TZ0mxdL/lwrld+rGHO2lqmQc+N09nYqlnmAWstRyO3RGf+vtXUUy2d7LrZH02sX4zEAoEmxfB4CAKu1uyiyZMmSePHFF7M/v/LKKzFz5szYYostYrvttovJkyfH6aefHiNGjIiRI0fGtGnTYunSpTFx4sQOBa2pqYmampqor6+PysrKDq0LAAAAAAAoP+0uijz++ONx8MEHZ3+ePHlyREScfvrpcfvtt8eJJ54Yb7/9dlx11VUxb968GD58eNx///1rTb4OAAAAAADQmdpdFBk9enSklNa5zKRJkzo8XBYAAAAAAEAu5XROkXwypwjkx/rG4G7L/AotzafRlrG9i3ls3bZky+UY7531+3fGGPDFMq57rnOUytwD0BEbU7vbmH6XXMvXtinmz/X2ass2Wt98JqW+DShNjn0AAOvXpdAB2qqmpibq6uqitra20FEAAAAAAIASVDJFEQAAAAAAgI5QFAEAAAAAAMqCOUXYKGzovAzG3IXVOntuk1xo6f3rPU2+FbKNtfba2n3n2NDtXCr7pyNzabXnd8zXsh1ZRzHMGdXavGyl9LkMtP94Uorn4ACwMSiZniLmFAEAAAAAADqiZIoiAAAAAAAAHaEoAgAAAAAAlAVFEQAAAAAAoCwoigAAAAAAAGWhW6EDtFUmk4lMJhMNDQ2FjsJ6DJ0yvdARcmbN3+XV68fl/f91lkLuo1y8di62b3vWkev9ma/tn+v1Fns7ZuM63parUt+HuT6md8brlZNS/7zP5+t0Rtvd0HONXOTxuQ0AAK0rmZ4iNTU1UVdXF7W1tYWOAgAAAAAAlKCSKYoAAAAAAAB0hKIIAAAAAABQFhRFAAAAAACAsqAoAgAAAAAAlIVuhQ7QVplMJjKZTDQ0NBQ6CiVi6JTpLT7+6vXjNuj/rfn4mutobfm2Pl+qWvq9NtbfdU35+h3bu95iybExKeffHYpNPt+P7Vl3vpYtdhvT71LqNnRftOW8dX3nxBQn+xAAoONKpqdITU1N1NXVRW1tbaGjAAAAAAAAJahkiiIAAAAAAAAdoSgCAAAAAACUBUURAAAAAACgLCiKAAAAAAAAZUFRBAAAAAAAKAuKIgAAAAAAQFnoVugAbZXJZCKTyURDQ0Oho1DEhk6ZXugI5FBb9mcu9nnTOl69flyH10XbeK8C5Ifja3lYcz939Pwll+vqzBztWb5YfsfWOBdlTcXeXgFgY1AyPUVqamqirq4uamtrCx0FAAAAAAAoQSVTFAEAAAAAAOgIRREAAAAAAKAsKIoAAAAAAABlQVEEAAAAAAAoC4oiAAAAAABAWVAUAQAAAAAAyoKiCAAAAAAAUBYURQAAAAAAgLLQrdAB2iqTyUQmk4mGhoZCRykbQ6dMz/771evHrXeZclKuv3epW99+y8V+LaW20Z6spfR7Ae3XGe9xxxHKWT7bfy7Pb1o7/2/L4219/sPL5ELT6+R6vYXUlu9iAABsmJLpKVJTUxN1dXVRW1tb6CgAAAAAAEAJKpmiCAAAAAAAQEcoigAAAAAAAGVBUQQAAAAAACgLiiIAAAAAAEBZUBQBAAAAAADKgqIIAAAAAABQFhRFAAAAAACAsqAoAgAAAAAAlAVFEQAAAAAAoCwoigAAAAAAAGVBUQQAAAAAACgLiiIAAAAAAEBZ6FboAG2VyWQik8lEQ0NDoaOUvaFTphc6Ahsh7QoA/s3nIvm2vjZWjG0wF5laWser14/L6Xo3dH2t/X7FuC/Irfbu+/W1sVy0RwDYmJVMT5Gampqoq6uL2traQkcBAAAAAABKUMkURQAAAAAAADpCUQQAAAAAACgLiiIAAAAAAEBZUBQBAAAAAADKgqIIAAAAAABQFhRFAAAAAACAsqAoAgAAAAAAlAVFEQAAAAAAoCwoigAAAAAAAGVBUQQAAAAAACgLiiIAAAAAAEBZUBQBAAAAAADKgqIIAAAAAABQFhRFAAAAAACAsqAoAgAAAAAAlAVFEQAAAAAAoCwUpCjy+9//PnbdddfYeeed44c//GEhIgAAAAAAAGWmW2e/4KpVq2Ly5Mnx5z//OSorK2PfffeNCRMmxJZbbtnZUQAAAAAAgDLS6T1FZsyYEXvssUdss802sdlmm8WRRx4Zf/rTnzo7BgAAAAAAUGbaXRR5+OGH4+ijj47BgwdHRUVF3HPPPWstk8lkYujQobHJJpvEfvvtFzNmzMg+9+abb8Y222yT/XmbbbaJN954Y8PSAwAAAAAAtFG7iyJLly6NYcOGRSaTafH5u+++OyZPnhxXX311PPnkkzFs2LAYO3ZsLFiwoMNhAQAAAAAANlS7iyJHHnlkXHvttTFhwoQWn//Wt74VZ599dkycODGqqqri1ltvjV69esVtt90WERGDBw9u1jPkjTfeiMGDB7f6esuXL4/6+vpmfwAAAAAAANorpxOtr1ixIp544omYOnVq9rEuXbrEmDFj4tFHH42IiJEjR8bs2bPjjTfeiMrKyrjvvvviyiuvbHWdX/va1+Kaa67JZUxaMHTK9EJH6DTl9LsCAEAure9cui3n2msu8+r14zZoHbnU2uu1lO3Dy7e2zIYs216+15SmQu63fLbHYlNOv2t7begxbE0buk1beu3OOk6u7/MmF6+t3RU/+4gmOZ1ofeHChdHQ0BADBgxo9viAAQNi3rx5ERHRrVu3+OY3vxkHH3xwDB8+PL70pS/Flltu2eo6p06dGosXL87+mTt3bi4jAwAAAAAAZSKnPUXa6lOf+lR86lOfatOyPXv2jJ49e+Y5EQAAAAAAsLHLaU+R/v37R9euXWP+/PnNHp8/f34MHDgwly8FAAAAAADQLjktivTo0SP23XffePDBB7OPNTY2xoMPPhijRo3q0LozmUxUVVVFdXV1R2MCAAAAAABlqN3DZy1ZsiRefPHF7M+vvPJKzJw5M7bYYovYbrvtYvLkyXH66afHiBEjYuTIkTFt2rRYunRpTJw4sUNBa2pqoqamJurr66OysrJD6wIAAAAAAMpPu4sijz/+eBx88MHZnydPnhwREaeffnrcfvvtceKJJ8bbb78dV111VcybNy+GDx8e999//1qTrwMAAAAAAHSmdhdFRo8eHSmldS4zadKkmDRp0gaHAgAAAAAAyLWczimST+YUAQAAAAAAOqJkiiI1NTVRV1cXtbW1hY4CAAAAAACUoJIpigAAAAAAAHSEoggAAAAAAFAWFEUAAAAAAICy0K3QAdoqk8lEJpOJVatWRUREfX19gRNtXBqXv7/O59fc3utbFgAAoC2avmfk4jtGa98RN3TdbVlfS/lb++6U63yUr/VdD+lIe9xYlNPv2l7t2TatHZ82dJu25/iZC+tbd65fW7srfvbRxq1pn6aU1rtsRWrLUkXk9ddfjyFDhhQ6BgAAAAAAUETmzp0b22677TqXKbmiSGNjY7z55pvRp0+fqKioKHScolNfXx9DhgyJuXPnRt++fWUpwizFlkeW0sgjS2nkkaX4sxRbHllKI48spZFHluLPUmx5ZCmNPLKURh5Zij9LseWRpTTyyFI6eVjdQ+S9996LwYMHR5cu6541pGSGz2rSpUuX9VZ6iOjbt2/RvCFlaV0x5ZGldcWUR5bWFVMeWVpWTFkiiiuPLK0rpjyytK6Y8sjSsmLKElFceWRpXTHlkaV1xZRHlpYVU5aI4sojS+uKKY8srSu2POWusrKyTcuZaB0AAAAAACgLiiIAAAAAAEBZUBTZyPTs2TOuvvrq6NmzZ6GjyLIOxZRHltYVUx5ZWldMeWQp/iwRxZVHltYVUx5ZWldMeWQp/iwRxZVHltYVUx5ZWldMeWQp/iwRxZVHltYVUx5ZWldseWifkptoHQAAAAAAYEPoKQIAAAAAAJQFRREAAAAAAKAsKIoAAAAAAABlQVEEAAAAAAAoC4oiAAAAAABAWVAUAQAAAAAAyoKiyEYmpVToCCWlmLZXMWWhZcW2j4otD2srtn1UbHmaFFOuYshSDBmaFFOWNRVTrmLKElFceYopy5qKKZcsrSumPLK0rpjyyNKyYsoSUVx5ZGldMeWRpXXFlEeWlhVTFpqrSPZOyVu6dGk0NjZGSin69u1b6DitSilFRUVFoWNERERDQ0N07do1Vq1aFd26dYvGxsbo0qUwNcJiyvLmm2/Gk08+GStWrIihQ4fGPvvsU5AcxZalqe02/V3IfVRseYppPxVTlmLaR8WWZ+7cufHnP/85li5dGjvuuGOMHTu2IDmKLUtEce2nYspSTPupmLIUW55iyvJhy5YtixUrVkTPnj2jZ8+eEVG489JiyrJkyZL44IMPIqUUW2+9dUGzFFueYtpPxZSl2PLIUvxZii1PMWUppmNeseUppv1UTFkiims/yVL8WViPREmbM2dOOvzww9Pee++dBg8enH7605+mlFJqbGwsaK7XXnst3Xbbbemb3/xmeuCBBwqa5cOee+65dP7556fjjjsunXPOOem1115LKaXU0NBQ1lmefvrptOOOO6aRI0em/v37pxEjRqRf/OIXnZ6j2LK88MIL6eqrr05nnHFG+vrXv57mzZuXUirce6yY8hTTfiqmLMW0j4otz9NPP5222267dOCBB6addtopbbPNNuk73/lOp+cotiwpFdd+KqYsxbSfiilLseUppiwfNmfOnDRhwoS0xx57pKOOOip997vflSWlNHv27HT44YennXfeOY0cOTJNnTq1YFmKLU8x7adiylJseWQp/izFlqeYshTTMa/Y8hTTfiqmLCkV136SpfizsH6GzyphdXV1cdBBB8Uee+wRF110UZx00kkxceLEmDlzZkErkM8880wcdNBB8aMf/Sh+9KMfxVFHHRU/+clPCpZnTbNnz44DDjgg3nvvvejevXu88MILcfzxx8eiRYs6/Q7YYsry0ksvxVFHHRXHH398/OlPf4r7778/9thjj7jvvvuioaGhU7v7FVOWZ555JkaNGhUvvPBCvPzyy3HvvffG+eefH0uXLi3Ie6yY8hTTfiqmLMW0j4otzyuvvBJHH310nHTSSfHAAw/EAw88EBMnTox77rkn/vWvf3XqfiqmLBHFtZ+KKUsx7adiylJseYopy4c1nSsPGjQovvCFL0RlZWX87Gc/iyeffLKsszz77LPZ7xDXXnttHHbYYfE///M/ce+993Z6lmLLU0z7qZiyFFseWYo/S7HlKaYsxXTMK7Y8xbSfiilLRHHtJ1mKPwttVKhqDB3zzjvvpMMPPzydf/75zR4fPXp0Ou+881JKhbmj8+WXX07bb799uvTSS9OyZcvS22+/na655pq09957p7feequgPVjeeOONNHz48HTJJZdkH3vooYfSRz/60fTwww+XbZbly5enyZMnpxNOOCEtX748+/iPfvSjtOWWW6aFCxeWZZa5c+emPfbYI02ZMiX72O23354++tGPppdeeqnTchRjnmLaT8WUpZj2UbHlWblyZbrqqqvSMccck5YuXZp9fPr06alfv35p7ty5ZZklpeLaT8WUpZj2UzFlKbY8xZTlwxYuXJg+8YlPpC9+8YvZx9555520/fbbpxtuuKFssyxatCiNHTu22XeI+vr6NHLkyDR58uROzVJseYppPxVTlmLLI0vxZym2PMWUpZiOecWWp5j2UzFlSam49pMsxZ+FttNTpEStXLky3n333Tj++OMjIqKxsTEiInbYYYdYtGhRRESn39G5cuXK+H//7//F8OHD4+qrr46ePXtG//79Y9SoUfHWW28VfAy9J598Mvr16xdnnnlm9q7FT3ziE9HY2Bhz5swp2yyNjY2x7bbbxmGHHRY9evTI5jnggANis802i5UrV3ZallWrVhVNlocffjiGDBkS5557bvb9deKJJ8a7774bzzzzTKfliFg9/mQx5dmQNpPydKfwhrSZfGUppn1UbG2mS5cuseuuu8YhhxwSvXr1yj4+cuTI6NOnT7z33ntr/Z987aeUUtFkiSiedqPNtK7Y2oxt0zavvfZaDBgwII477riIWP15scUWW8RRRx0V77zzTkT8+/w537mKKcuiRYtiq622ys750tDQEH369Imjjz465s+fn32sM7IUW55i2k/FlKXY8shS/FmKLU8xZSmmY16x5Smm/VRMWSKKaz/JUvxZaLtuhQ7AhhkwYED89Kc/jZ133jkiVr+5unTpEttss0289tprzZZdsmRJbLbZZnnN09DQEN27d48999wzNtlkk9h0002zz40cOTK6d+8eCxcujEGDBuU1x7rsuOOO8bnPfS522WWXiIjsxOZ9+vRp8cJpPieV/chHPhJnnnlmUWTZZJNNYvz48bHDDjs0e7xfv37RvXv3Znmeeuqp2HvvvXOe4d13341+/fpFr1694rjjjovtttuuYFmaDBw4MI4//vjYfvvtI2J1G6+oqIiePXvGsmXL1lo+n/uooqIiBg0aFJ/+9KeLIs+GtJlcF0Q70mbyVZzVZlrXpUuXGDt2bGy55ZYR8e+J5nr37h3dunWLFStWZJd99NFHY9SoUTnfT2+//XZstdVW0b179zjyyCNj8803L1iWNRVLu9Fm1lasbca2aZttttkmJkyYEAceeGBERHTt2jWbccGCBRERzdpvPnI1bY9tt9224FmabLHFFnHqqafG4Ycf3ux1Gxsb41//+lenZWk6fvTv378o8kRoM+ti27TMdmmdbdMyx+DWaTOtK4Z2U4xtxnaho/QUKWFNBZHGxsbo3r17RDQ/SEdEfO1rX4vvf//7sWrVqrzlmDlzZowfPz4++OCDOProo+Oyyy7LZomI6NZtde1tzYuT//jHP/KWpzW77757nHrqqRGxeps15erXr1+zL+033nhjvPbaazm/0PPiiy9GbW1tNsspp5xSsCxvvfVWzJgxI+6///5obGzMXtxuugAWEbF48eLswTsi4qqrropDDz00e2dErsycOTOOPvromDlzZkRE9uL2mj2LOivLmkaPHh1nnnlmRKzeR127do2ePXvGVltt1ayq/4Mf/CDefPPNvFwY/L//+7949tlns3k+97nPFSxPR9tMLu+E6GibydddGdpMc3Pnzo0//elP8d///d/xr3/9K/r06RMR/24zjY2NsXjx4li6dGn2GHjFFVfExz72sViwYEHO28wBBxwQf/3rXyMishdwI6LTs3xYoduNNtOyYmsztk3bLF++PPv3gAED4qSTToqI5p9Vay4XEfH1r389rr322pxnee655+InP/lJrFixIrbeeutslg/3nO6MLB988EE0NjbGsmXLYvPNN89+Yf/wdmn6vlBRURFXXnll1NTU5DxLxOpx2r/61a/GsmXLorKyMpvnw9umM/JoM62zbVpmu7TOtmmZY3DrtJnWFVO7KaY2Y7uQS4oiG4EuXbo0+4LZdJHiqquuissvvzwOPfTQ7JfSXJs1a1YccMABUVVVFZtuumlssskmEfHvA9LKlStjyZIl0dDQkB1W4bLLLotRo0bF22+/nZdMTZ5//vm49NJLY+LEiTFt2rR48cUXW1yuoaEh243tqquuiksvvTQWL16c0ywzZ86MfffdN3sRt0lKqdlFpc7I8vTTT8eoUaPi1FNPjZNOOin22GOPuPPOO2PRokXRtWvXbFuqqKiILl26xGabbRbXXnttfOMb34gHHngge2dqLsyaNStGjhwZo0aNiuHDhzd7bs023RlZXnzxxbj++utj6tSpcccdd8T777/f7PWbNDQ0ZD/Urrzyyvj85z8f9fX1OcvR5KmnnooRI0Zkh1NrytBSm8l3nly0mVzdCZGLNpOrLNpM655++ukYOXJkXHTRRTFp0qQYPnx43HjjjfH666+v1WYqKipis802i+uuuy5uuummmDFjRmy99dY5bTP7779/HHvssdm7vZqs2e29M7JEFFe70WZaVmxtxrZpmzlz5sTJJ58chx12WBxzzDHx8MMPZy9cdO3aNZuvf//+2aLSZZddFldddVUcffTROc0ya9as2H333WPx4sXRo0ePiPj39lnz9++MLLNnz46jjz46Pvaxj8WIESPipz/9abzxxhsREc3azxZbbBE9e/bMZvnGN74REydOzGmWiNXbZs8994wePXpkvzc0NjaudQGhM/JoM62zbVpmu7TOtmmZY3DrtJnWFVO7KaY2Y7uQc2vNMkJJamhoSCmldPXVV6dzzjkn3Xjjjalnz57piSeeyNtrzpo1K/Xu3TtdfPHFzR5fc7LjxsbG9Pbbb6fBgwenl19+OX3lK19Jm222WZoxY0becqWU0pw5c1JlZWU64ogj0nHHHZcqKyvTmDFj0g9+8IO1co4aNSrdeuut6aabbsrLNps5c2bq1avXOidXWrFiRadkWbBgQdptt93SZZddll566aX0xhtvpBNPPDHtvvvu6eqrr04LFizILjt//vy09957pxNPPDH16NEjPf744znNMnv27LTpppumq666KqW0uq2888476eWXX15r2c7I0q9fv/SJT3wiHXTQQalbt27puOOOS/fff392mZUrV6bly5enXXbZJf3yl79M3/zmN/P2Hps5c2bq3bt3uvDCC1tdZtWqVZ2SR5tpPYs207JFixalffbZJ11yySVp/vz5qaGhIX3pS19K++23XzrttNPSq6++ml32gw8+SMOGDUtjx45NPXr0SLW1tTnNMmfOnLTJJpukL3/5yyml1W3m9ddfTzNnzlxr2XxnSam42o0207JiazO2Tds8//zzqW/fvumcc85JF198cTr++ONTRUVFuvrqq9Nrr73WbNmLL744TZo0KX3lK19Jm2yySc4/H1o7P25sbEwprX5fdVaWl156KW2++eappqYmffvb307nnXde2nzzzdM555yz1mt985vfTJ/+9KfTNddck3r27JnzLCmtf9t0Zh5tpnW2Tctsl9bZNi1zDG6dNtO6Ymo3xdRmbBfyQVFkI3PttdemioqKVFlZmdcvoG+99VYaOHBgGjt2bEpp9QfFBRdckMaNG5d222239F//9V/pn//8Z0oppWXLlqWPfvSjacyYMXm5OPlhy5cvT6eccko6++yzs4+98MIL6cQTT0z7779/uummm5ot/6lPfSr169cv9e7dO+fFmueffz717NkzXX755Sml1cWPe++9N33/+99Pv/3tb9OSJUs6LUtKqy9oDB06dK19cOmll6Y999wz3XDDDWnp0qUppZTq6upSRUVF2nTTTdNTTz2V0xwLFy5MO+20U9p7772zj02cODHtu+++adCgQemggw5KTz31VPZDJZ9Z3n///fTJT34y1dTUZB974okn0ogRI9KYMWPSr3/962bLH3zwwWmnnXZKvXr1yst77Nlnn029evVKl112WUpp9QXShx56KP3mN79JDz/88FrL5zuPNrM2bWbdXnvttbT99tun//mf/2n2+Le//e00atSo9IUvfCG9/fbbKaWU5s6dmyoqKlKPHj3SrFmzcprj3XffTQcccEAaMmRI9rGTTjop7bnnnql3796pqqoq/epXv8q233xmSam42o0207JiazMp2TZtdcUVV6TDDz+82WM333xz2nLLLdOll16a5s2bl338wgsvTBUVFal37945Pyd97rnnUp8+fdI555yTUlp909Ktt96aLr744nTxxRenF154odny+cySUkrf+MY30kEHHdTssZ/97Gdpr732Sqeddlp65plnso9/9atfTRUVFalPnz55yfLyyy+nzTffPH3mM59JKa3eNtdff30666yz0gknnJAefvjh7E1enZFHm2mdbdMy26V1tk3LHINbp820rljaTbG1GduFfDB81kZm7NixERHx97//PUaMGJHX1xo1alS888478dvf/jY++clPxjPPPBO77bZbHHrooXHzzTfHjTfeGK+++mq8/fbbMWfOnPjrX/8atbW1se++++Y1V48ePWL+/PnNhgHZaaed4oYbbojddtstfvnLX8bvfve77PKbbrppLFu2LB577LGorq7OWY5Vq1bFLbfcEptttll2mJ/x48fHFVdcEdddd11MmDAhJk6cGE899VTeszRZuXJlrFq1KjtcywcffBAREddff30cfPDB8d3vfjc7zNjmm28eX/jCF+LJJ59ca5iijtpyyy3jiCOOiN69e8eXv/zlGDlyZLz11lvx+c9/Pr7zne/EypUrY/z48fHSSy/lPcumm24aixYtiv79+0fE6i6P++yzT/z3f/93rFq1Kr7//e/HrFmzss81NjbGW2+9FY899ljO32MrV66Myy67LHr37h2f+tSnIiLi2GOPjS9+8Ytx7rnnxqGHHhqTJk3KzhuU7zwRq8dMLZY2c/jhh2sza0gpxYoVK4quzXTp0iV69eoVb775ZkT8ewzVSZMmxbHHHht//vOf45FHHomI1d2Jr7vuupg1a1bstddeOc1RWVkZ48ePj5133jlOP/30GDFiRLz33ntx5ZVXxiOPPBK77rprTJ48Of7+97/nPUvE6nbzzjvvFLzdNDQ0xGWXXRa9evXSZj6k2NpMxOohGzbddNOi2DbHHHNM7LTTTkWzbdbU9NkU8e9tdN5558VXv/rVuOWWW+I3v/lN9vmhQ4fGjjvuGP/4xz9yfk46Y8aMWLJkSey2227x6quvxiGHHBI/+9nP4uGHH46HHnooPvrRj8b06dM7JUuT+vr6WLJkSXYYkM985jNx5ZVXxqOPPhp33XVXdtjWqqqq2HPPPePRRx/NS5Y5c+ZE7969Y6uttoonnngixowZE3/84x/jrbfeivr6+vjEJz4R3/3ud7PL5zuPNtM626ZltkvrbJvWOQa3rFjazGOPPVZ0bSaiONpNsbWZCNuFPCh0VYbc+3Dvg3x5880302mnnZY23XTTdNhhh6WFCxdmn/vZz36W+vXrl37/+9+nlFKaNm1amjNnTt4zrVq1Kq1YsSJNnDgxHX/88WnZsmWpsbExW6l96aWX0qhRo9KJJ56Y/T9//etf1+qimSvPP/98Ouecc9L++++fhgwZko466qj07LPPpvfffz89/vjjaZtttkmnnXZadvm//e1vecvSpLq6Oh188MHZn5ctW5b994gRI9JJJ52U/fmDDz7I+euvWTWfPHlyGjBgQBo3blyzu0FSSmmPPfZIp59+el6zpJTSe++9lw4++OB07rnnppRWt6GVK1emlFb3kth2223TF7/4xZTS6u6Qd911V4vDNeXKE088kcaOHZsOP/zwtNtuu6UjjjgiPfnkk+m1115L06dPTz169EhTp07Na54333yz2ft1xIgRBWszb775ZrO7jC+88MKCtZmmtltfX58OPvjg9B//8R8ppcK1maau3I8//ngaO3ZsGjt2bMHazNKlS5sNnfipT30q7b333undd99NKaXs9kkppSOPPDKNHj06+3PT8IG5zPL+++9nf7755ptTVVVVOvzww9Mbb7zRbNkDDzyw2V1quc6S0uo75mtra9OqVasK3m7mzp2bXnnllVRXV1fwNvNhn/zkJwvWZj5s2rRpBW0zDQ0NzT4rP/3pT6c999yzINumoaGh2Tq/973vpV122aVg26Y1N910U+rTp08205rHo2uuuSZtttlm2fOr119/Pc2dOzdvWaZNm5YGDx6ctttuu/SpT30qzZ07Ny1btix98MEH6dxzz039+vVLr7/+eqdkufvuu9Omm26annzyyZRS8+3y3e9+N/Xo0SPNnj07pbS6R+b8+fPzliWllO64445sD8+mz/GmdvKf//mfaZNNNknPPvtsp+S5+eabi6bN3HTTTUXTZpryFMu2Kab3kzbTOtumZY7Bza15narQbea9997L/ruY2kxKKd15551F025++tOfFs3n9l133VU026XQ7yVyR1GEDnnjjTfS1KlT04MPPphSaj6G3k477ZQdY2/NcRjz4cPrf+ihh1LXrl2bDZXVtMxDDz2UunTp0qx7XT6zvPjii+nUU09N48aNyw4p1uTee+9NFRUVaz2eK0uWLEn19fVp8eLF2ceefPLJtPXWW6eTTz45+1jTBZbJkyeno48+utOypLS6G+SvfvWrtcbsPO6449Lxxx+flyzvvPNOevbZZ9Nzzz2XUkrpd7/7XaqoqEi/+tWvUkrNLwLdcccdafPNN0+vvPJKXrI05amrq8u2g2effTZ97GMfS4cddthar3vLLbek/v3756149vrrr6ctt9wyTZgwIT366KMppZSeeuqp1L9//05vMy1lSSmlG264odPbzFNPPZU++clPZk/mf/GLXxS0zTz11FNp3Lhx2RP6mTNnFqzNPPPMM2ncuHHpL3/5S3b7vP3222mHHXZIhx12WLMT1pRWX+A48MADm13YzUeWpmF8Ukrpxz/+cbr33nuzF5qbXvv8889Phx56aM5zNJk9e3YaMmRIdt6OO++8s2DtZvbs2WnbbbdNF1xwQUoppdra2oK1mblz56a77747/epXv8p+sSlUm2kpS0qFazNz5sxJp556ajr44IPTxIkT0x/+8Ie0YMGCNGzYsHTwwQd36rZZM8vnPve5dM8996SUUvrNb36TfvWrX3X6tlmX5cuXp4MOOijtv//+2Zt0mgrjb731VhoyZEj2fdcZpk2blvbbb7+1hkmoq6tLW265Zbr33nvz+vprno9PmDAhDRkyJPuFfM0bG3baaad088035zVLSs3Pje+88870qU99qtnnekqrh2jbaqut0ve+972850lp9ZCGo0ePLpo2c/PNNxeszTQ2NjbbR8uWLSvYtvlwlpQKt23eeeedZnPnLV26tGDb5cNZUlo9jGKh2swLL7zQbKjnQr6fPpwlpcJtmxdeeCH9+te/bnacLeQxuCnPmjcLFeoY/M9//jOdcsop2XPLJUuWFKzNNGVZc162Qr6fli5dmhYtWtRsPx1zzDEFaTdNWdYsYP3sZz8ris/tlFbfeFfoc5omP/3pT4tmu7DhFEXosMWLF681ufrChQvTqFGj0n//93/n/fWfe+659I1vfCO9+eabzR7/xje+kbp06dJscvWUVt+Jv/vuu+flwlNrWV577bV03333ZS9+NX1Z/eUvf5l222239K9//SvnWebMmZMOP/zwtPfee6fBgwenn/70pyml1Scbd955Z+rfv386/vjj04oVK7IXNk455ZR00kknpZUrV7Y4SVQus6z5hefDF3kaGxvT8ccf32xC7Vx55pln0t5775323HPP1L1793TNNdekZcuWpfPOOy/17Nkz/e53v2u2/B/+8Ie0++67N+sJlUsfztM0ge0///nP9Mtf/nKtNnPLLbekPffcM289Z/785z+nbt26pUMOOSSddtpp2YuEd911V9p8883T+PHjO6XNtJTlscceyz635kljSvltMzNnzkybbrppuvTSS7OPrVy5Mk2aNCn17NlzrZPkfLeZD+dZcx6VX/7yl9n3U2e0maaJwz//+c+n//u//2v23KOPPpoGDx6cPvGJT6Tnn38++/pnnnlmOuqoo9Z63+czS0rNT5qbfPazn03nnXdeamxszHn7nTlzZurVq1faYYcd0oABA9Jbb72VUkrZY01TT8om+Ww3H87S9BnVdJxpuqjdGW3m6aefTttvv30aMWJEGjBgQDr66KOzBepHH300bbvttp3WZlrKsuZNCi29Xj7bzLPPPps233zzdOaZZ6ZvfvObaezYsWnHHXdMX/ziF9MjjzyS9thjj/Sxj32sU7ZNS1l22GGH9KUvfanV/5PPbbOm5557Ll1yySXpjDPOSNOmTUvPP/98SimlBx98MI0cOTIdeuih6Z133skuv2jRorTbbrut9fmejyx1dXXZ55544onsZ1XT9pg1a1bafffd8zI3z/z585udTzZ9Ts+ePTt97GMfSzvssEOzu1uXLl2a9t5777ydq7eWJ6XVn1dNbbhp27z44otpr732yt5olUsvv/xy+ta3vpUmT56c7rrrruzr/u53v0ujRo3q1DbTUpYmM2fO7NQ2k9LqNvzFL34xjRs3Ll1zzTXZz6Df//73nb5tPpxlzTtrO3vbvPTSS2nHHXdMV155ZbNecb///e/TAQcc0KnbpbUsKRWmzTz11FOpb9++6fvf/36zxwvRZj6cZc3jTGdvm1mzZqWtttoqnX322emNN97Ivubs2bPTqFGjOv0Y3FqelFZ/N+/MY3DTd5eKior0//7f/8u+7vTp0zu9zbSUZc3nOvv9NHv27PTJT34y7b777mn8+PHZ75WF+Oz+cJbf/va32ec6+3P7n//8Z5oyZUo65ZRT0o033pieeOKJ7Gvut99+nbpdPpxlzcLZ008/3anbhdxTFCEvrrrqqrTzzjs3q77nwwsvvJC22GKLVFFRkaZOnZqdbDSl1QfGa665JlVUVKQrrrgiPfnkk+mdd95JU6ZMSTvttNNad9vkM0tKLV+kveiii9LYsWPX6j3RUXPmzElbbrlluvDCC9PPfvazNHny5NS9e/fsBe6lS5eme++9N2277bZpt912S+PHj08nnHBC6t27d8570LSWpbXJr1euXJmuuOKKNGjQoLUmNstVlosuuijNmTMnfeMb30gVFRXpjTfeSG+88UY6++yzU/fu3dN3v/vd9NZbb6UPPvggTZkyJQ0bNiwtWrQop1nWlafpfbPmiX2TL37xi+m4445rdhd8Lr3zzjvpU5/6VPre976X9tlnn/SZz3wme8HpnnvuSVVVVWnXXXfNa5tpLctnP/vZ9PTTT6eUmm+bfLaZWbNmpd69e2d7vTVZtWpVWrhwYaqpqenUNtNannVdvM5Xm1myZEk6/PDDs8NBpbT6QupTTz2VPUmdPXt2qqqqSjvvvHMaOXJkOuaYY9Jmm22W84mX15Wlpc+hDz74IF1++eVp6623zktPvaYvXJdddll6++23U1VVVbr22mtTSqsviJ1zzjmpe/fu6Xvf+17e282Hs+yxxx7pK1/5SrYw3dJnU77azKuvvpq22WabNGXKlLRkyZL0hz/8IQ0cODD94x//yC7TWW2mLVnWlO82s2zZsvTZz342nX/++c1ec/jw4amioiKdfPLJ6emnn0777bdf2nHHHfO6bVrLsvfee6eKiorsxJJrPpfPbbOmOXPmpMrKynTEEUek4447LlVWVqZDDjkk/eQnP0kpre75OXLkyLTDDjukP/7xj+l///d/0xVXXJEGDhyY855PLWUZM2ZMuvXWW1v9P5deemkaMWJEzs9B6+rqUo8ePdLxxx/f4jnljBkz0ujRo1O/fv3S9773vXTnnXemKVOmpC233DK99NJLOc2yrjwtndc0ufzyy9Nee+211o1FHfX000+nbbfdNh166KHpgAMOSF26dEnXX399Smn1Z/nPf/7z7AXLfLeZlrLccMMN6/w/+WozTXm23nrrdPzxx6fPf/7zqUePHtmbS1atWpXuvvvu7MWnztg2H87SdKNQa/K5bW699dZUUVGR9t577/TVr341W4xYtWpVuuuuuzrtONNSlqabLFqTz+3SdJPF5MmT13pu1apV6Re/+EWntZl1ZWlNvrbNa6+9lrbbbru1zs+bPP300+nAAw/stGPw+vK0JF/H4Kbz0EsuuSRddNFF6cADD8y+nxoaGjr1GNxSlrfeemudN3Lk8/00Z86ctPnmm6eampp06623po997GPZkRkaGxtTbW1tOuiggzql3bSU5TOf+cw6t02+2sycOXNSv3790qc//el07rnnpiFDhqThw4dni5/PPPNMp72fWsqyzz77pFtuuaXV/5Ov7UJ+KIqQU3feeWc655xz0uabb95sGIp8WLJkSfrc5z6XzjjjjJTJZFJFRUW6+OKLm31gNTQ0pB//+Mdp4MCBaZtttkm77bZbGjx4cLbSnO8saxZG1vxAmT17drr88stT3759sxd5c+Wdd95Jhx9+eLOLGSmlNHr06HTeeec1e6y+vj5dcskl6ayzzkqTJk3K+bwvbcmy5nb505/+lI4++ug0cODAnLeft99+Ox100EHZMfubXnvs2LHpscceS08//XSaMWNG+s53vpN69OiRdthhh7TXXnulrbbaKi9tubU8RxxxRHrkkUey4/s3efHFF9OVV16Z+vXrlx0rM9dWrVqVFixYkHbZZZf0+uuvp1//+tepuro6nXnmmekTn/hEOuGEE1J9fX266KKL8tZm1pfl7LPPTgcccEA67rjjUkop3X///XlrM2+99VYaOHBgGjt2bDbTBRdckI488shUVVWVvv3tb6c///nP6eabb+6UNtNannHjxqXddtst/dd//Vezu5RfeumlvLaZZcuWpY9//OPpySefTKtWrUpjx45N1dXVabPNNkv77bdf+uEPf5hd9uabb05TpkxJV199dd4uKLeUpU+fPmn//fdvluX3v/99OvTQQ9M222yTl/00a9as1LNnz3TZZZellFZ/Dh1//PFp3333zS7z5ptvpuuuuy716NEj7bjjjnlrN61lqa6uzi6z5kXKfLeZ733ve2n06NHNjvtHHXVU+t73vpduv/329Oc//zn7eL7bzLqy/PjHP07/+7//m308322myaGHHpq9CNhU6LzkkkvSsccem/bdd9+UyWRSSquHeMjntllXluOOOy7ts88+6cYbb0wppTR9+vQ0ZsyYvG+blFb33DnllFPS2WefnX3shRdeSCeeeGKqrq7ODlNQV1eXTj755LTVVlulXXbZJe2xxx45P+9bV5b999+/2fCtKaX0yCOPpPPPPz/169cvzZw5M6dZ5s2blw444IB0yCGHpP79+6dPf/rTLRZGFi1alCZPnpx23333tOuuu6b99tsvL/usrXma3H///ammpiZtvvnmrd4ws6FeffXVtNNOO6VLLrkke6z70Y9+lAYMGJB97zQ2NqaZM2emz372s3ltM+vK0nTzyZry2WZSWl2gHzp0aHb+qJRS+vKXv5y+8IUvNOtZWVdXl0466aS8bpt1ZWlpbqJ8b5uUVn9+nn766enaa69NgwcPTv/5n//ZrCfn888/nz7zmc/kdbusK0tLowzke7s8//zzqWfPnunyyy9PKa2eN+ree+9N3//+99Ovf/3rbK/T2bNn5/0YvK4sv/3tb5vNF5FS/rfN7373u3TUUUdls1x++eVp/Pjx6XOf+1y64447Ukqrz1XPP//8vB+D15XnrLPOSj/+8Y+bLZvPY/Djjz+e+vbtmz0PvfPOO1NlZWX629/+ll2ms47B68vy4aJ9vtvM+++/n8aPH9/sWsBvf/vbNGHChPTWW29lj8Od0W7WlWX+/PnN3k+NjY15bTPvvfdeGjt2bLrkkkuyjzUNqb3VVlulr3/969nlLrjggrxul3VlGTBgQPaGtyb53C7kj6IIOTVr1qw0bty4vF20XdP777+fMplMtuv53Xff3WJhJKWUXnnllfSXv/wl3XfffdlJsjory4d7jLzyyivpiCOOSDvuuGNeDpbz5s1LI0eOTA8//HBK6d8f8BMnTkyf/exnU0qp2eTzTdZ1914+szRpbGxML7zwQrr00kuzk1Ll0sKFC9N1113X7IvnV77ylVRRUZH22muvtN1226UjjjgiO7fH3Xffne6666689XZaV57hw4enIUOGpLFjx6a//e1v6cUXX0zHHHNMGjp0aF4/YJsuDn72s59N999/f0pp9QWv/v37p80226zZheWU8tNm2pKlT58+2e7OL7zwQrrkkkvy0mbeeuutNGHChDRixIh0zz33pCOOOCIdeuih6Utf+lL6whe+kD7ykY+ks846Ky1ZsiTNmjUr721mXXlqamrSDjvskM4888z02muvpTlz5uS9zcybNy9ttdVW6U9/+lO68MIL09ixY9OsWbPSfffdly6++OI0cODA7BfBfGtLll/84hcppdU95b761a/m7WLyjBkz0pVXXplS+vd75J///GeqrKxc666ifLebdWX5zne+02zZzmgzt956a9pxxx2zX1quvfbaVFFRkcaMGZNGjBiRtt5667WG48iXdWWprq5OW2+9dfY4k+8209jYmJYuXZoOPPDAdOqpp2YvLL3++utp++23T7fddls65ZRT0oEHHpiX19+QLAcffHBKKf/b5sMOO+ywdM4552SzprT6jtgzzjgjfexjH0t/+MMfsss+++yz6Y033ljrPKwzshx44IHZITDmzp2brr322rTPPvvkvFdPSindd9996TOf+Uyqra1N//jHP9IWW2yxzkLE66+/nv71r3/lZejW9uZ577330rRp09L++++f85uEGhoa0vXXX5+OOOKI9O6772Yfb+qt0VKbzVebaW+W119/Pa9tZtWqVenGG29M//Ef/9Fsv5x11llp1KhRqbq6Op1zzjmd8n5qS5Zzzz03+356880387ptmsycOTPtvPPOqbGxMV1zzTVpyJAhadq0aemYY47Jfq6mlP/jzLqyTJgwIVtIyvdxZuXKlen8889PW265ZfZ86qijjkp77bVXGjp0aOrSpUs69thjm72P87Vt2pLl05/+dPbzPd/bJqXVE4Pvv//+KaWUxowZk0aPHp2++MUvpsMOOywNGzYseyE+pfwfg9eXZ/jw4dl28/7776ebbropL8fgJUuWpN69e2fn1Wty6KGHpkMOOaTFudDy1WbamyXfx+CUVn8uHHjggemaa67JPnbRRReloUOHpm222SaNHj26WaE4n+1mfVkOOeSQNGXKlJTS6ptC8vW5ndLq88rq6ursd8imXuuf/vSn06GHHpr233//dN9992WXf+ONN/K2XdaX5YADDsh+TtbX1+ftvUR+KYqQc7ke13pd1pwAKqXV8x5UVFSkiy66KPthunLlyrxNFtvWLE13FjXd/f7KK6/kNdOaF9qb7rC64oor0qmnntpsuTW/fORr/O+2Zmn6kPnw5Iq5VF9fn/1304THd999d3rnnXfSQw89lEaMGJEdNqAzrCvPX/7yl1RdXZ2uueaatGLFivS///u/eZ24e02nnXZa9sTnzDPPTJtvvnmqqqpKn/vc55pNJJbPMePbkqVpUsV8tpk333wznXbaaWnTTTdNhx12WLO7BH/605+mysrKvIx3uyF5fvazn6V+/fplTxT//Oc/57XNNDY2ppNOOilNmjQpffKTn8wWr1Ja/QX0lFNOSeeee25auXJl9oJ8vtpMW7J8/vOfb/GO03xrbGxM7777bnbIuabtkc+iYluzrFq1Kptj+fLleW8zL7/8cjrggAPSTjvtlI477rhUUVGR7rnnntTY2Jjmz5+fzj///DR69Oj09ttv573NtDVLPoZLaM3f/va31KVLl3TQQQelU089NfXu3TudddZZKaXVQwX06dMnPfvss+sc+qyzsmy22WbNeqbl26pVq9KKFSvSxIkT0/HHH5+WLVvW7AaPl156KY0aNSqdcMIJ2f+Tr+3T1iwnnnhiNse8efPyNs/UggULmvWyevTRR7OFiDUvwLd0AaqQeZo0NjbmZbjJlFL6y1/+kj2HaNLQ0JCGDh3aLGNnaG+WBQsW5PVC+9y5c5ud0/3nf/5n6tq1a7r88svTzTffnKqrq9MhhxySHeYmn8ebtmZpOh7n8/20psMPPzz7mXjDDTek3r17p8rKymbnGJ31Wd5alj/+8Y8ppdX756233srrdnn++efTOeeck/bff/80ZMiQdNRRR6Vnn302vf/+++nxxx9P22yzTbPvd/lsM23Jctppp2Vz5LvNPPDAA+mQQw5JP/zhD9Nhhx2WvQnz3XffzRYoWhoCuJB5mj7Dly1blrcCzZrnlE3nLj/4wQ/SLrvsku0J0tDQkG0r+Wwzbc3SJJ9tpqGhIS1evDiNHTs2TZgwIWUymTR16tS06aabpv/3//5fuu+++9I111yT9tlnn/TrX/96rWyFytJUnM5Xm2k6Bx88eHC2R3JKqz8jqqqq0o9//OO01157Zc9Hm/5PPmxIluXLl+e12El+KIqwUVi1alX2gNh0cfniiy9Ob7zxRrrwwgvTsccem5YsWdIpF3HXl2X8+PF5myT7w9b88Lz88suzw+6klNJ1112XvvnNb3bal+T1ZfnGN77RaVlSWj2MwYe75Y4bNy598pOf7LQMbclz9NFHd1qGpnZ7++23p6uvvjr9x3/8Rxo0aFB6+eWX069//ev0kY98JJ177rktTlhdiCyf//znO+W99MYbb6SpU6dmJ0tb8ziy0047pYsuuijvGdqTpz3jB3dUbW1t6t27d6qoqFhrwvkvfelL6aCDDuqU426xZWnJr371q1RRUdFsyIByzPLyyy+nu+++O1199dXp+OOPb/bc9ddfn4YNG9Zpn5HFlKXJjBkz0imnnJLOOuus7HBZKa0exmD33Xdv8aLyxpzlw0Xvhx56KHXt2rXZ8FRNyzz00EOpS5cueR1isr1Z8jXnVms3AzSdaz322GPNemisWLEifec730l/+tOfiiZPJpPJS57WsjQd/xsaGtIOO+zQ7LX/53/+Jy8F0A3J8qc//SlvxZDW8ixcuDBdcMEFze6+raurSxUVFc0eK3SWNXuudEaW0aNHZ4caOvPMM1Pfvn3TwIED0w033LDWhOeFzJKPURBay/Piiy+mU089NY0bN26tHk733ntvqqioSM8991zRZMlXL8YPZ3n22WfT4MGDU1VVVRozZkyz5/7v//4v9erVK6+9pzckz89+9rO8Z2npvPu9995LQ4YMSTU1NXl5/Y5myed3hQ/vp8ceeywdccQR6TOf+Uzadddd049+9KPsc/PmzUvbbbdd+trXvlZ2WW655ZZUUVGRPve5z6UrrrgibbbZZtnhSn/xi1+koUOHpoULF+alUFRMWegciiJsNNa8S++uu+5K3bt3T7vuumvq1q1bp4/pt64s+R5zu6UsKa0uRBx55JEppZSuvPLKVFFRkbdxeEshy5oaGhrSBx98kE488cT01a9+tWA5iiXPX/7yl1RRUZEGDhyYHn/88ezjv/nNb9LLL79cllkWL17crBdcY2NjWrhwYRo1alTevlRsaJ6f/vSnnZrl4YcfThUVFemTn/xks4uR559/fjrrrLM6tXdGMWX5sOXLl6fDDz88ffazn03vv/9+wXIUS5Yf/OAHady4cc3a8YUXXpiOOeaYtXpellOWlFr+Qn7RRRel0aNHr3Nuho0ty3PPPZe+8Y1vrDVR5Te+8Y3UpUuX9IMf/KDZ40888UTafffd89LbqRSyfFjT0FUnnHBCmjhxYurevXt68cUXN+o8LWVZsw2vXLkyLVmyJO20007pscceSymlNHXq1FRRUZHzi9zFlKW1PGtq6rHd9B3m6aefTvvss09ehgEp9ixN5wqXXnpp+u///u903nnnpcGDB6eXX345XXfddalXr17pm9/8Zs57KhdTltbypLR6mMD77rsvm62pXf/yl79Mu+22W17ulC6FLL///e9Tt27d0tZbb53+/ve/Zx9fvnx5OuSQQ5r1MNpY86zvvd3UTjOZTPrIRz7S7LvdxpxlXXmWLFmSVq1alUaNGpXuvvvu7OMrVqxIhx12WPamlFwWa4o9S0NDQ7r99ttTdXV1OuKII7LziKS0el69vffeOy/Fq2LKQudRFGGj0tjYmD0oHXLIIWmLLbYo2Jh+xZKlqThz9dVXp3POOSfdeOONqWfPnnmbDLBUsnzYlVdembbbbrsWJ7sshELmWbFiRfrRj36UHUO1kB/0xZTlw6666qq08847520OkfYqZJ6//OUvafDgwWnkyJHpzDPPTKeeemqqrKzM213SpZLlw772ta+lvn37prfeeqvQUQqeZc6cOamysjLdcMMN6Sc/+Um65JJLUr9+/QryOVlMWT7s6aefTl/4whdS3759C3rzQGdneeGFF9IWW2yRKioq0tSpU5vdOb906dJ0zTXXpIqKinTFFVekJ598Mr3zzjtpypQpaaeddsr5Hf+lkqUlf/vb31JFRUXaYost8nKuVUx52pKl6aaTpgtgX/nKV1Lv3r2zw3FujFnWl6e1YWsuu+yytN9++3VqGy6mLCmldNttt6WKioo0aNCgVFtbm33861//es7Pz4spS1vytFYwHzt2bM4L5qWU5c4770xdunRJY8eOTXfeeWd64YUX0pQpU9LgwYPT//3f/+U0S7Hlac/nQdMQZ2v2Qt1Ys6wvT0NDQ1qyZEnab7/90pVXXpn+9a9/pffeey9deeWV2VESyjFLSil98MEHa41QMWnSpHT88cenDz74IKfXBYopC51LUYSNzqpVq9KFF16YKioq8joBX6llaZpEtrKystnJdLln+fnPf55qamrSlltu2em9eIo5TzF1AS2mLCmt/oJxzjnnpM0337wo2kyx5PnnP/+ZrrjiijRmzJj0H//xHwUtQhRTlpT+/YV90aJFad999+20+YGKPcv//u//po985CNp5513TqNHjy7o52QxZWmybNmy9Otf/zqddNJJBc/TmVmWLFmSPve5z6UzzjgjZTKZ7DCka14QbWhoSD/+8Y/TwIED0zbbbJN22223NHjw4JxfaC+FLK1d7Fm+fHk699xzU58+fdKcOXNymqXY8rQ3y957752qq6tTjx49cn4eWkxZNiTPnDlz0hVXXJH69u2b8/d6qWV57rnn0hVXXJEdcSBf56PFlKWteda8ADh79ux0+eWXp759++Zlsu5SypLS6uH4Ro0alQYMGJB22223tMsuu+Tl/LyY8rT3vZ1SSqeffnradddd04oVK3J6QbmYsrQnz913350qKirSLrvskvbbb7+0/fbbF2w/FUuWNffFs88+my644ILUp0+fgh9n8pmFzqcowkZn1apV6Yc//GGnD5lV7Flqa2tTRUVFXr4Yl3KW2bNnpxNOOKFTJ4xdl2LLw9pmzZqVxo0bl7dx69ur2PIUahLxlhRTlpRWn1AXYjimlhRLlnfeeSfNmzevKCYmLKYsTZYtW1YU+ymlzsvy/vvvp0wmk+66666U0r+/nH+4GJHS6olT//KXv6T77rsvL+Pql0qWli72zJgxI+2xxx556XlQbHnammXVqlXpnXfeSZWVlalr1655uZhRTFnakyel1UMRTZgwIe2+++556Q1WilmahvJKKX+9lYspS3vypLT6uHfEEUekHXfcMS/fd0s1y8KFC9Pzzz+fnnrqqbzNEVRMedqTpantPvbYY3kZCrmYsrQ3z9/+9rd07bXXpltvvTUvNy2Vapb6+vp08803p0984hMFf2/nOwudT1GEjVIxdV8rpizFcmElpeLKUsh5BlpSbHlY25pzDxSDYssD0BEfPke46667UkVFRbrooouyX1BXrlyZXnvtNVn+/ywLFy5MKa0uBjcNi7Jo0aKyydOWLCtXrkxvv/12uv/++/N6I0ExZWlrnlWrVqX58+enuXPnprlz55Z9lqaiZ0NDQ6fMYVdMWdaXZ839tGDBgvTKK6/k9fhXallWrlzZab1wiylPWz8PXnrppbLKsr48TecRK1asyFsBrRSzfPjzYOXKlQU/h+isLHQuRREAAKDorFq1KntzyZ133pm9c++NN95IF154YTr22GPTkiVLOuUGlFLKMn78+PT+++/nPUcx5llflgkTJjS7475csrQlz/jx49MHH3wgSwvv7WJpM52ZpS15imk/FVOWzvw8KLY8bW3D5ZalLXkmTJhQNPupmLIU0zlEZ59fkX+KIgAAQFFqbGzMDoN31113pe7du6ddd901devWrdOHLiiVLIWYX6qY8rSWpWvXrkWznwqRZV15imk/FVuWYmkzhciyvjzFtJ+KKUux7adybsPFlKXY8pRKlmJ6bxfDfKLkVkVKKQUAAEARavq6UlFREYceemjMnDkzHnroodhzzz1lKZIsxZZHltLII0vxZym2PLKURh5ZSiOPLMWfhTzrzAoMAABAe61atSpdeOGFqaKiIs2aNUuWIsxSbHlkKY08shR/lmLLI0tp5JGlNPLIUvxZyJ8uhS7KAAAArM8ee+wRTz75ZOy1116FjiLLOhRTHllaV0x5ZCn+LBHFlUeW1hVTHllaV0x5ZCn+LOSH4bMAAICil1KKioqKQseICFnWpZjyyNK6YsojS8uKKUtEceWRpXXFlEeW1hVTHllaVkxZyA9FEQAAAAAAoCwYPgsAAAAAACgLiiIAAAAAAEBZUBQBAAAAAADKgqIIAAAAAABQFhRFAAAAAACAsqAoAgAAAAAAlAVFEQAAAAAAoCwoigAAAAAAAGVBUQQAAAAAACgLiiIAAAAAAEBZUBQBAAAAAADKgqIIAAAAAABQFhRFAAAAAACAsqAoAgAAAAAAlAVFEQAAAAAAoCwoigAAAAAAAGVBUQQAAAAAACgL3QodoL0aGxvjzTffjD59+kRFRUWh4wAAAAAAAAWUUor33nsvBg8eHF26rLsvSMkVRd58880YMmRIoWMAAAAAAABFZO7cubHtttuuc5mSK4r06dMnIlb/cn379i1wGgAAAAAAoJDq6+tjyJAh2frBupRMUSSTyUQmk4mGhoaIiOjbt6+iCAAAAAAAEBHRpik3KlJKqROy5Ex9fX1UVlbG4sWLFUUAAAAAAKDMtadusO4ZRwAAAAAAADYSiiIAAAAAAEBZKNk5RQAAAAAAYF0aGhpi5cqVhY5BB3Xv3j26du2ak3WZUwQAAAAAgI1KSinmzZsX7777bqGjkCP9+vWLgQMHtjiZenvqBiXTUwQAAAAAANqiqSCy9dZbR69evVq8kE5pSCnF+++/HwsWLIiIiEGDBnVofYoiAAAAAABsNBoaGrIFkS233LLQcciBTTfdNCIiFixYEFtvvXWHhtIy0ToAAAAAABuNpjlEevXqVeAk5FLT/uzoHDGKIgAAAAAAbHQMmbVxydX+LJmiSCaTiaqqqqiuri50FAAAAAAAoASVTFGkpqYm6urqora2ttBRAAAAAACAEmSidQAAAAAAysLQKdM77bVevX5c7tb16quxww47xFNPPRXDhw/P2XrzZfTo0TF8+PCYNm1aoaOspWR6irB+Q6dMz/4BAAAAAIBi9NZbb8VnPvOZ2GWXXaJLly5xwQUXdNprK4oAAAAAAACdZvny5bHVVlvFFVdcEcOGDevU11YUAQAAAACAAmtsbIwbbrghdtppp+jZs2dst9128dWvfrXZMi+//HIcfPDB0atXrxg2bFg8+uij2efeeeedOPnkk2ObbbaJXr16xZ577hl33nlns/8/evToOP/88+OSSy6JLbbYIgYOHBhf/vKXmy1TUVERP/zhD2PChAnRq1ev2HnnnePee+9ttszs2bPjyCOPjM022ywGDBgQp556aixcuLDNv+vQoUPjpptuitNOOy0qKyvb/P9yoWSKIplMJqqqqqK6urrQUQAAAAAAIKemTp0a119/fVx55ZVRV1cXd9xxRwwYMKDZMpdffnlcdNFFMXPmzNhll13i5JNPjlWrVkVExLJly2LfffeN6dOnx+zZs+Occ86JU089NWbMmNFsHT/+8Y+jd+/e8Y9//CNuuOGG+MpXvhIPPPBAs2WuueaaOOGEE+Lpp5+Oo446Kj772c/GokWLIiLi3XffjUMOOST23nvvePzxx+P++++P+fPnxwknnJDHrZM7JTPRek1NTdTU1ER9fX2nV44AAAAAACBf3nvvvbjpppvilltuidNPPz0iIj7ykY/Exz/+8WbLXXTRRTFu3OoJ3K+55prYY4894sUXX4zddtstttlmm7jooouyy5533nnxxz/+MX7+85/HyJEjs4/vtddecfXVV0dExM477xy33HJLPPjgg3HYYYdllznjjDPi5JNPjoiI6667Lm6++eaYMWNGHHHEEXHLLbfE3nvvHdddd112+dtuuy2GDBkSzz//fOyyyy453jq5VTJFEQAAAAAA2Bg9++yzsXz58jj00EPXudxee+2V/fegQYMiImLBggWx2267RUNDQ1x33XXx85//PN54441YsWJFLF++PHr16tXqOprWs2DBglaX6d27d/Tt2ze7zKxZs+LPf/5zbLbZZmvle+mllxRFAAAAAACA1m266aZtWq579+7Zf1dUVETE6rlIIiJuvPHGuOmmm2LatGmx5557Ru/eveOCCy6IFStWtLqOpvU0raMtyyxZsiSOPvro+PrXv75WvqZCTTFTFAEAAAAAgALaeeedY9NNN40HH3wwzjrrrA1axyOPPBLHHHNMnHLKKRGxuljy/PPPR1VVVS6jxj777BO/+tWvYujQodGtW+mVGEpmonUAAAAAANgYbbLJJnHppZfGJZdcEj/5yU/ipZdeisceeyx+9KMftXkdO++8czzwwAPx97//PZ599tn4/Oc/H/Pnz8951pqamli0aFGcfPLJUVtbGy+99FL88Y9/jIkTJ0ZDQ0Ob1zNz5syYOXNmLFmyJN5+++2YOXNm1NXV5Tzvh5VeGQcAAAAAADbAq9ePK3SEVl155ZXRrVu3uOqqq+LNN9+MQYMGxbnnntvm/3/FFVfEyy+/HGPHjo1evXrFOeecE+PHj4/FixfnNOfgwYPjkUceiUsvvTQOP/zwWL58eWy//fZxxBFHRJcube+Hsffee2f//cQTT8Qdd9wR22+/fbz66qs5zfthFSmllNdXyJFMJhOZTCYaGhri+eefj8WLF0ffvn0LHauoDJ0yPfvvYn5zAwAAAADky7Jly+KVV16JHXbYITbZZJNCxyFH1rVf6+vro7Kysk11g5IZPqumpibq6uqitra20FEAAAAAAIASVDJFEQAAAAAAgI5QFAEAAAAAAMqCoggAAAAAAFAWFEUAAAAAANjopJQKHYEcytX+VBQBAAAAAGCj0b1794iIeP/99wuchFxq2p9N+3dDdctFGAAAAAAAKAZdu3aNfv36xYIFCyIiolevXlFRUVHgVGyolFK8//77sWDBgujXr1907dq1Q+tTFAEAAAAAYKMycODAiIhsYYTS169fv+x+7QhFEQAAAAAANioVFRUxaNCg2HrrrWPlypWFjkMHde/evcM9RJqUTFEkk8lEJpOJhoaGQkcBAAAAAKAEdO3aNWcX09k4lMxE6zU1NVFXVxe1tbWFjgIAAAAAAJSgkimKAAAAAAAAdISiCAAAAAAAUBYURQAAAAAAgLKgKAIAAAAAAJQFRREAAAAAAKAsKIoAAAAAAABlQVEEAAAAAAAoC4oiAAAAAABAWVAUAQAAAAAAyoKiCAAAAAAAUBYURQAAAAAAgLJQMkWRTCYTVVVVUV1dXegoAAAAAABACSqZokhNTU3U1dVFbW1toaMAAAAAAAAlqGSKIgAAAAAAAB2hKAIAAAAAAJQFRREAAAAAAKAsKIoAAAAAAABlQVEEAAAAAAAoC4oiAAAAAABAWVAUAQAAAAAAyoKiCAAAAAAAUBYURQAAAAAAgLKgKAIAAAAAAJQFRREAAAAAAKAsKIoAAAAAAABlQVEEAAAAAAAoC4oiAAAAAABAWVAUAQAAAAAAyoKiCAAAAAAAUBY6vSjy7rvvxogRI2L48OHx0Y9+NH7wgx90dgQAAAAAAKAMdevsF+zTp088/PDD0atXr1i6dGl89KMfjWOPPTa23HLLzo4CAAAAAACUkU7vKdK1a9fo1atXREQsX748UkqRUursGAAAAAAAQJlpd1Hk4YcfjqOPPjoGDx4cFRUVcc8996y1TCaTiaFDh8Ymm2wS++23X8yYMaPZ8++++24MGzYstt1227j44oujf//+G/wLAAAAAAAAtEW7iyJLly6NYcOGRSaTafH5u+++OyZPnhxXX311PPnkkzFs2LAYO3ZsLFiwILtMv379YtasWfHKK6/EHXfcEfPnz2/19ZYvXx719fXN/gAAAAAAALRXu4siRx55ZFx77bUxYcKEFp//1re+FWeffXZMnDgxqqqq4tZbb41evXrFbbfdttayAwYMiGHDhsVf//rXVl/va1/7WlRWVmb/DBkypL2RAQAAAAAAcjunyIoVK+KJJ56IMWPG/PsFunSJMWPGxKOPPhoREfPnz4/33nsvIiIWL14cDz/8cOy6666trnPq1KmxePHi7J+5c+fmMjIAAAAAAFAmuuVyZQsXLoyGhoYYMGBAs8cHDBgQ//znPyMi4rXXXotzzjknO8H6eeedF3vuuWer6+zZs2f07NkzlzEBAAAAAIAylNOiSFuMHDkyZs6c2dkvCwAAAAAAlLmcDp/Vv3//6Nq161oTp8+fPz8GDhzYoXVnMpmoqqqK6urqDq0HAAAAAAAoTzktivTo0SP23XffePDBB7OPNTY2xoMPPhijRo3q0Lpramqirq4uamtrOxoTAAAAAAAoQ+0ePmvJkiXx4osvZn9+5ZVXYubMmbHFFlvEdtttF5MnT47TTz89RowYESNHjoxp06bF0qVLY+LEiTkNDgAAAAAA0B7tLoo8/vjjcfDBB2d/njx5ckREnH766XH77bfHiSeeGG+//XZcddVVMW/evBg+fHjcf//9a02+DgAAAAAA0JkqUkqp0CHaIpPJRCaTiYaGhnj++edj8eLF0bdv30LHKipDp0zP/vvV68cVMAkAAAAAAHSO+vr6qKysbFPdIKdziuSTOUUAAAAAAICOKJmiCAAAAAAAQEcoigAAAAAAAGWhZIoimUwmqqqqorq6utBRAAAAAACAElQyRRFzigAAAAAAAB1RMkURAAAAAACAjlAUAQAAAAAAyoKiCAAAAAAAUBZKpihionUAAAAAAKAjSqYoYqJ1AAAAAACgI0qmKAIAAAAAANARiiIAAAAAAEBZUBQBAAAAAADKgqIIAAAAAABQFkqmKJLJZKKqqiqqq6sLHQUAAAAAAChBJVMUqampibq6uqitrS10FAAAAAAAoASVTFEEAAAAAACgIxRFAAAAAACAsqAoAgAAAAAAlAVFEQAAAAAAoCwoigAAAAAAAGVBUQQAAAAAACgLJVMUyWQyUVVVFdXV1YWOAgAAAAAAlKCSKYrU1NREXV1d1NbWFjoKAAAAAABQgkqmKAIAAAAAANARiiIAAAAAAEBZUBQBAAAAAADKgqIIAAAAAABQFhRFAAAAAACAsqAoAgAAAAAAlAVFEQAAAAAAoCyUTFEkk8lEVVVVVFdXFzoKAAAAAABQgkqmKFJTUxN1dXVRW1tb6CgAAAAAAEAJKpmiCAAAAAAAQEcoigAAAAAAAGVBUQQAAAAAACgLiiIAAAAAAEBZUBQBAAAAAADKgqIIAAAAAABQFhRFAAAAAACAsqAoAgAAAAAAlAVFEQAAAAAAoCwoigAAAAAAAGVBUQQAAAAAACgLiiIAAAAAAEBZKJmiSCaTiaqqqqiuri50FAAAAAAAoASVTFGkpqYm6urqora2ttBRAAAAAACAElQyRREAAAAAAICOUBQBAAAAAADKgqIIAAAAAABQFhRFAAAAAACAsqAoAgAAAAAAlAVFEQAAAAAAoCwoigAAAAAAAGVBUQQAAAAAACgLiiIAAAAAAEBZ6FboAJS2oVOmZ//96vXjCpgEAAAAAADWTU8RAAAAAACgLCiKAAAAAAAAZcHwWQCA4RABAACAsqCnCAAAAAAAUBYURQAAAAAAgLLQ6UWRuXPnxujRo6Oqqir22muv+MUvftHZEQAAAAAAgDLU6XOKdOvWLaZNmxbDhw+PefPmxb777htHHXVU9O7du7OjAAAAAAAAZaTTiyKDBg2KQYMGRUTEwIEDo3///rFo0SJFEQAAAAAAIK/aPXzWww8/HEcffXQMHjw4Kioq4p577llrmUwmE0OHDo1NNtkk9ttvv5gxY0aL63riiSeioaEhhgwZ0u7gFM7QKdOzfwAAAAAAoFS0uyiydOnSGDZsWGQymRafv/vuu2Py5Mlx9dVXx5NPPhnDhg2LsWPHxoIFC5ott2jRojjttNPi+9///oYlBwAAAAAAaId2D5915JFHxpFHHtnq89/61rfi7LPPjokTJ0ZExK233hrTp0+P2267LaZMmRIREcuXL4/x48fHlClT4oADDljn6y1fvjyWL1+e/bm+vr69kQGAdlizJ+Cr148rYBIAAACA3Gp3T5F1WbFiRTzxxBMxZsyYf79Aly4xZsyYePTRRyMiIqUUZ5xxRhxyyCFx6qmnrnedX/va16KysjL7x1BbxcuQWgAAAAAAFLOcFkUWLlwYDQ0NMWDAgGaPDxgwIObNmxcREY888kjcfffdcc8998Tw4cNj+PDh8cwzz7S6zqlTp8bixYuzf+bOnZvLyADAOphHCgAAANiYtHv4rI76+Mc/Ho2NjW1evmfPntGzZ888JgKA8rWhxY6W/p+htgAAAIBil9OeIv3794+uXbvG/Pnzmz0+f/78GDhwYIfWnclkoqqqKqqrqzu0HgAAAAAAoDzltCjSo0eP2HfffePBBx/MPtbY2BgPPvhgjBo1qkPrrqmpibq6uqitre1oTAAAAAAAoAy1e/isJUuWxIsvvpj9+ZVXXomZM2fGFltsEdttt11Mnjw5Tj/99BgxYkSMHDkypk2bFkuXLo2JEyfmNDgAAAAAAEB7tLso8vjjj8fBBx+c/Xny5MkREXH66afH7bffHieeeGK8/fbbcdVVV8W8efNi+PDhcf/99681+ToAUFpMtg4AAACUunYXRUaPHh0ppXUuM2nSpJg0adIGh2pJJpOJTCYTDQ0NOV0vAAAAAABQHtpdFCmUmpqaqKmpifr6+qisrCx0HAAoWXp8AAAAAOUqpxOtAwAAAAAAFCtFEQAAAAAAoCwoigAAAAAAAGWhZIoimUwmqqqqorq6utBRAAAAAACAEmSidQAoAyZXBwAAACihniIAAAAAAAAdoSgCAAAAAACUBUURAAAAAACgLJRMUcRE6wAAAAAAQEeYaB0AyIk1J3N/9fpxBUwCAAAA0LKSKYoAAKVDgQQAAAAoRiUzfBYAAAAAAEBHKIoAAAAAAABlwfBZ5JwhUwAAAAAAKEYl01Mkk8lEVVVVVFdXFzoKAAAAAABQgkqmKFJTUxN1dXVRW1tb6CgAAAAAAEAJKpmiCAAAAAAAQEeYUwRYJ3PEAAAAAAAbC0URANiIKGQCAAAAtE5RhDZZ8yIbtIULswAAAABAsVEUASJCEQMAAAAA2PiVTFEkk8lEJpOJhoaGQkeBkpHrQofCCZQWvfwAAAAAmiuZokhNTU3U1NREfX19VFZWFjoOlD0FEgAAAACg1JRMUQTY+CisAAAAAACdqUuhAwAAAAAAAHQGPUWgDBXjPANNmcx9AgAAAADki54iAAAAAABAWVAUoeCGTplelD0XaDv7EAAAAAAoBYbPgo3E+oafUrSAjZv3OAAAAMD6KYpAiemM+TI29OKqi7LA+pjzBwAAACgkRZEy4AIUrOa9kBu2IwAAAAClqmSKIplMJjKZTDQ0NBQ6Cu3g4ikRhe1B0p7X1l4BAAAAYONWMkWRmpqaqKmpifr6+qisrCx0HIqAC9gbp9aKGOvbx4buAgAAAADWp2SKIlBuFH1KS3smurc/AQAAAKAwFEWAkqCosH753EaGIaMj9OQCAAAAikWXQgcAAAAAAADoDHqKwIe09y73loZNam0d7qAvHu3ZF4Xcb7l+7fWtb0Pbf1uXBwAAAIBCUhShrG3oBd2WhoIpluFhiiVHObCtAQAAAKC0KIrQaYrljvJivJC9vkm6aV0x7k8AAAAAoDiZUwQAAAAAACgLeorQqmK8A///a+/Ow6Mq7///vycskTXsIJuAIFvZ1+AXZA+CKAgKVVARRWoQBZF9KRaXKrZIjaJWq1YLfFyqqIVqrUi1UBAISEB2KfuqQAKBJPP6/ZHfnGYgwQBzZk6Y5+O6elUmh8yL+7znnDPnPvd955UpHCMtClJ7XOn4d3tzVFG07hcAAAAAAAAUHHSKwDO8fsM31C7mBjI3m3EhoagPagwAAAAAAADRgOmzAAAAAAAAAABAVGCkCIJE89Pi0fxvx5UnP/X8c9vwmQAAAAAAAMCVpsB0iiQlJVlSUpJlZWVFOgoKoEu9ucu0RNHLzf0WiqniqCuYUQcAAAAAAAAXq8BMn5WYmGgbN260VatWRToKAAAAAAAAAAAogArMSBGERrQtZg4AAAAAAAAAQECBGSkCAAAAAAAAAABwORgpgisK8+vDbdRY6AXalNFr+UMNAgAAAAAAXDpGigAAAAAAAAAAgKjASBFEBE865452KfhYtyfYxbQHbQcAAAAAAAC3MVIEAAAAAAAAAABEBUaKwJMYMYFwcqve8vN7WU8DAAAAAAAACB9GigAAAAAAAAAAgKjASBEA8IBoWE+D9UUAAAAAAAAQaYwUAQAAAAAAAAAAUYGRIjAz1vAAvITPIwAAAAAAAOAORooAAAAAAAAAAICoQKcIAAAAAAAAAACICnSKAAAAAAAAAACAqECnCAAAAAAAAAAAiAostA4AuOLlXLz+h6f7RDDJpcmZHwAAAAAAAJcuIiNF+vfvb2XLlrWBAwdG4u0BAAAAAAAAAEAUikinyMMPP2xvvfVWJN4aAAAAAAAAAABEqYhMn9W5c2dbunRpJN4aOTAdC4BI4fgDs4I/rRkAAAAAACh4LnqkyLJly6xv375WtWpV8/l89uGHH563TVJSktWqVcuuuuoqa9euna1cuTIUWQEAAAAAAAAAAC7ZRXeKpKWlWbNmzSwpKSnXny9cuNDGjh1rM2bMsDVr1lizZs0sISHBDh06dEkBz5w5YydOnAj6HwAAAAAAAAAAwMW66OmzbrzxRrvxxhvz/Pnvfvc7u//++23YsGFmZjZv3jz79NNP7fXXX7eJEydedMCnnnrKZs6cedF/DwAQ3ZiiCwAAAAAAAOcK6ULrZ8+etdWrV1v37t3/9wYxMda9e3dbvnz5Jf3OSZMm2fHjx53/7d69O1RxAQAAAAAAAABAFAnpQutHjhyxrKwsq1y5ctDrlStXtu+//975c/fu3W3dunWWlpZm1atXt3fffdfi4+Nz/Z2xsbEWGxsbypgAAAAAAAAAACAKhbRTJL/+8Y9/ROJtAQAAAAAAAABAFAtpp0iFChWsUKFCdvDgwaDXDx48aFWqVLms352UlGRJSUmWlZV1Wb8nWjCXPoArxcUcz354us9F/b78bA8AAAAAAIArR0jXFClatKi1atXKvvjiC+c1v99vX3zxRZ7TY+VXYmKibdy40VatWnW5MQEAAAAAAAAAQBS66JEiqamptm3bNufPO3futOTkZCtXrpzVrFnTxo4da3fffbe1bt3a2rZta3PmzLG0tDQbNmxYSIMDAAAAAAAAAABcjIvuFPn222+tS5cuzp/Hjh1rZmZ33323vfHGGzZo0CA7fPiwTZ8+3Q4cOGDNmze3JUuWnLf4OgAAAAAAAAAAQDhddKdI586dTdIFtxk1apSNGjXqkkPlhjVFAAAAAAAAAADA5QjpmiJuYk0RAAAAAAAAAABwOQpMpwgAAAAAAAAAAMDloFMEAAAAAAAAAABEhQLTKZKUlGSNGjWyNm3aRDoKAAAAAAAAAAAogApMpwhrigAAAAAAAAAAgMtRYDpFAAAAAAAAAAAALgedIgAAAAAAAAAAICrQKQIAAAAAAAAAAKJC4UgHyK+kpCRLSkqyrKysSEcBAHhUrYmfRjpCyFxJ/xYAAAAAAACvKDAjRVhoHQAAAAAAAAAAXI4C0ykCAAAAAAAAAABwOegUAQAAAAAAAAAAUYFOEQAAAAAAAAAAEBXoFAEAAAAAAAAAAFGBThEAAAAAAAAAABAVCkynSFJSkjVq1MjatGkT6SgAACDEak381GpN/DTSMQAAAAAAwBWuwHSKJCYm2saNG23VqlWRjgIAAAAAAAAAAAqgAtMpAgAAAAAAAAAAcDnoFAEAAAAAAAAAAFGBThEAAAAAAAAAABAV6BQBAAAAAAAAAABRgU4RAAAAAAAAAAAQFQpHOkB+JSUlWVJSkmVlZUU6CgAAF1Rr4qfOf//wdJ98b5+fbQEAAAAAAHDpCsxIkcTERNu4caOtWrUq0lEAAAAAAAAAAEABVGA6RQAAAAAAAAAAAC4HnSIAAAAAAAAAACAq0CkCAAAAAAAAAACiAp0iAAAAAAAAAAAgKtApAgAAAAAAAAAAogKdIgAAAAAAAAAAICrQKQIAAAAAAAAAAKICnSIAAAAAAAAAACAqFI50gPxKSkqypKQky8rKinQUAMAVotbET53//uHpPgX2Pa4kebUX7QgAAAAAAEKhwIwUSUxMtI0bN9qqVasiHQUAAAAAAAAAABRABaZTBAAAAAAAAAAA4HLQKQIAAAAAAAAAAKICnSIAAAAAAAAAACAq0CkCAAAAAAAAAACiAp0iAAAAAAAAAAAgKtApAgAAAAAAAAAAogKdIgAAAAAAAAAAICrQKQIAAAAAAAAAAKICnSIAAAAAAAAAACAq0CkCAAAAAAAAAACiAp0iAAAAAAAAAAAgKhSOdID8SkpKsqSkJMvKyop0FABAlKg18dN8b/vD030u6vflZ3sAAAAAAACEVoEZKZKYmGgbN260VatWRToKAAAAAAAAAAAogApMpwgAAAAAAAAAAMDloFMEAAAAAAAAAABEBTpFAAAAAAAAAABAVKBTBAAAAAAAAAAARAU6RQAAAAAAAAAAQFSgUwQAAAAAAAAAAEQFOkUAAAAAAAAAAEBUoFMEAAAAAAAAAABEBTpFAAAAAAAAAABAVKBTBAAAAAAAAAAARAU6RQAAAAAAAAAAQFSgUwQAAAAAAAAAAEQFOkUAAAAAAAAAAEBUoFMEAAAAAAAAAABEBTpFAAAAAAAAAABAVIhIp8gnn3xi9evXt3r16tkf//jHSEQAAAAAAAAAAABRpnC43zAzM9PGjh1rX375pcXFxVmrVq2sf//+Vr58+XBHAQAAAAAAAAAAUSTsI0VWrlxpjRs3tmrVqlnJkiXtxhtvtM8++yzcMQAAAAAAAAAAQJS56E6RZcuWWd++fa1q1arm8/nsww8/PG+bpKQkq1Wrll111VXWrl07W7lypfOzffv2WbVq1Zw/V6tWzfbu3Xtp6QEAAAAAAAAAAPLpojtF0tLSrFmzZpaUlJTrzxcuXGhjx461GTNm2Jo1a6xZs2aWkJBghw4duuywAAAAAAAAAAAAl+qiO0VuvPFGmzVrlvXv3z/Xn//ud7+z+++/34YNG2aNGjWyefPmWfHixe311183M7OqVasGjQzZu3evVa1aNc/3O3PmjJ04cSLofwAAAAAAAAAAABcrpAutnz171lavXm2TJk1yXouJibHu3bvb8uXLzcysbdu2tmHDBtu7d6/FxcXZ4sWLbdq0aXn+zqeeespmzpwZypgAAOSp1sRPw/L3ctv+Ut/7SpVXe+R8/Yen+4QrTkSE+9+a1/uFIoeb/5bA787r93qlHb2sIGa+UrEv4CXUIwAAuBKFdKH1I0eOWFZWllWuXDno9cqVK9uBAwfMzKxw4cL23HPPWZcuXax58+b26KOPWvny5fP8nZMmTbLjx487/9u9e3coIwMAAAAAAAAAgCgR0pEi+XXzzTfbzTffnK9tY2NjLTY21uVEAAAAAAAAAADgShfSkSIVKlSwQoUK2cGDB4NeP3jwoFWpUiWUbwUAAAAAAAAAAHBRQtopUrRoUWvVqpV98cUXzmt+v9+++OILi4+Pv6zfnZSUZI0aNbI2bdpcbkwAAAAAAAAAABCFLnr6rNTUVNu2bZvz5507d1pycrKVK1fOatasaWPHjrW7777bWrdubW3btrU5c+ZYWlqaDRs27LKCJiYmWmJiop04ccLi4uIu63cBAAAAAAAAAIDoc9GdIt9++6116dLF+fPYsWPNzOzuu++2N954wwYNGmSHDx+26dOn24EDB6x58+a2ZMmS8xZfBwAAAAAAAAAACKeL7hTp3LmzSbrgNqNGjbJRo0ZdcigAAAAAAAAAAIBQC+maIm5iTREAAAAAAAAAAHA5CkynSGJiom3cuNFWrVoV6SgAAAAAAAAAAKAAKjCdIgAAAAAAAAAAAJeDThEAAAAAAAAAABAVCkynCGuKAAAAAAAAAACAy1E40gHyKzEx0RITE+348eNWpkwZO3HiRKQjeY7/zKlIRwCAAitwXuFYWrBc6dcDOesxHP/WvN4vFDnc/LcEfndev9cr7ehlBTHzlYp9AS+hHgEAQEERuFaR9LPb+pSfrTxkz549VqNGjUjHAAAAAAAAAAAAHrJ7926rXr36BbcpcJ0ifr/f9u3bZ6VKlTKfzxfpOJ5z4sQJq1Gjhu3evdtKly5NFg9m8VoeshSMPGQpGHnI4v0sXstDloKRhywFIw9ZvJ/Fa3nIUjDykKVg5CGL97N4LQ9ZCkYeshScPMgeIXLy5EmrWrWqxcRceNWQAjN9VkBMTMzP9vTArHTp0p75QJIlb17KQ5a8eSkPWfLmpTxkyZ2Xsph5Kw9Z8ualPGTJm5fykCV3Xspi5q08ZMmbl/KQJW9eykOW3Hkpi5m38pAlb17KQ5a8eS1PtIuLi8vXdgVmoXUAAAAAAAAAAIDLQacIAAAAAAAAAACICnSKXGFiY2NtxowZFhsbG+koZLkAL+UhS968lIcsefNSHrJ4P4uZt/KQJW9eykOWvHkpD1m8n8XMW3nIkjcv5SFL3ryUhyzez2LmrTxkyZuX8pAlb17Lg4tT4BZaBwAAAAAAAAAAuBSMFAEAAAAAAAAAAFGBThEAAAAAAAAAABAV6BQBAAAAAAAAAABRgU4RAAAAAAAAAAAQFegUAQAAAAAAAAAAUYFOEQAAAAAAAAAAEBXoFLnCSIp0hALFS+3lpSzIndf2kdfy4Hxe20deyxPgpVxeyOKFDAFeypKTl3J5KYuZt/J4KUtOXspFlrx5KQ9Z8ualPGTJnZeymHkrD1ny5qU8ZMmbl/KQJXdeyoJgPrF3Cry0tDTz+/0myUqXLh3pOHmSZD6fL9IxzMwsKyvLChUqZJmZmVa4cGHz+/0WExOZPkIvZdm3b5+tWbPGzp49a7Vq1bKWLVtGJIfXsgRqN/D/kdxHXsvjpf3kpSxe2kdey7N792778ssvLS0tzerUqWMJCQkRyeG1LGbe2k9eyuKl/eSlLF7L46Us50pPT7ezZ89abGysxcbGmlnkrku9lCU1NdVOnz5tkqxSpUoRzeK1PF7aT17K4rU8ZPF+Fq/l8VIWLx3zvJbHS/vJS1nMvLWfyOL9LPgZQoGWkpKinj17qkWLFqpatarefvttSZLf749orl27dun111/Xc889p88//zyiWc61efNmjR49WgMGDNCIESO0a9cuSVJWVlZUZ1m/fr3q1Kmjtm3bqkKFCmrdurXefffdsOfwWpatW7dqxowZuueee/Tb3/5WBw4ckBS5z5iX8nhpP3kpi5f2kdfyrF+/XjVr1lTHjh1Vt25dVatWTS+++GLYc3gti+St/eSlLF7aT17K4rU8XspyrpSUFPXv31+NGzdW79699dJLL5FF0oYNG9SzZ0/Vq1dPbdu21aRJkyKWxWt5vLSfvJTFa3nI4v0sXsvjpSxeOuZ5LY+X9pOXskje2k9k8X4W/DymzyrANm7caJ06dbLGjRvbuHHjbPDgwTZs2DBLTk6OaA/kd999Z506dbLXXnvNXnvtNevdu7e99dZbEcuT04YNG6xDhw528uRJK1KkiG3dutUGDhxox44dC/sTsF7Ksn37duvdu7cNHDjQPvvsM1uyZIk1btzYFi9ebFlZWWEd7uelLN99953Fx8fb1q1bbceOHbZo0SIbPXq0paWlReQz5qU8XtpPXsripX3ktTw7d+60vn372uDBg+3zzz+3zz//3IYNG2Yffvih/fjjj2HdT17KYuat/eSlLF7aT17K4rU8XspyrsC18tVXX20PPvigxcXF2TvvvGNr1qyJ6iybNm1yvkPMmjXLevToYf/4xz9s0aJFYc/itTxe2k9eyuK1PGTxfhav5fFSFi8d87yWx0v7yUtZzLy1n8ji/SzIp0j1xuDyHD16VD179tTo0aODXu/cubMeeughSZF5onPHjh265pprNGHCBKWnp+vw4cOaOXOmWrRoof3790d0BMvevXvVvHlzjR8/3nlt6dKl+sUvfqFly5ZFbZYzZ85o7Nixuv3223XmzBnn9ddee03ly5fXkSNHojLL7t271bhxY02cONF57Y033tAvfvELbd++PWw5vJjHS/vJS1m8tI+8licjI0PTp0/XLbfcorS0NOf1Tz/9VGXKlNHu3bujMovkrf3kpSxe2k9eyuK1PF7Kcq4jR47ohhtu0MMPP+y8dvToUV1zzTV65plnojbLsWPHlJCQEPQd4sSJE2rbtq3Gjh0b1ixey+Ol/eSlLF7LQxbvZ/FaHi9l8dIxz2t5vLSfvJRF8tZ+Iov3syD/GClSQGVkZNhPP/1kAwcONDMzv99vZma1a9e2Y8eOmZmF/YnOjIwM+9Of/mTNmze3GTNmWGxsrFWoUMHi4+Nt//79EZ9Db82aNVamTBkbPny489TiDTfcYH6/31JSUqI2i9/vt+rVq1uPHj2saNGiTp4OHTpYyZIlLSMjI2xZMjMzPZNl2bJlVqNGDRs5cqTz+Ro0aJD99NNP9t1334Uth1n2/JNeynMpNSOXnhS+lJpxK4uX9pHXaiYmJsbq169vXbt2teLFizuvt23b1kqVKmUnT5487++4tZ8keSaLmXfqhprJm9dqhrbJn127dlnlypVtwIABZpZ9vihXrpz17t3bjh49amb/u352O5eXshw7dswqVqzorPmSlZVlpUqVsr59+9rBgwed18KRxWt5vLSfvJTFa3nI4v0sXsvjpSxeOuZ5LY+X9pOXsph5az+RxftZkH+FIx0Al6Zy5cr29ttvW7169cws+8MVExNj1apVs127dgVtm5qaaiVLlnQ1T1ZWlhUpUsSaNGliV111lRUrVsz5Wdu2ba1IkSJ25MgRu/rqq13NcSF16tSxe++916677jozM2dh81KlSuV649TNRWWvvfZaGz58uCeyXHXVVdavXz+rXbt20OtlypSxIkWKBOVZu3attWjRIuQZfvrpJytTpowVL17cBgwYYDVr1oxYloAqVarYwIED7ZprrjGz7Br3+XwWGxtr6enp523v5j7y+Xx29dVX22233eaJPJdSM6HuEL2cmnGrc5aayVtMTIwlJCRY+fLlzex/C82VKFHCChcubGfPnnW2Xb58ucXHx4d8Px0+fNgqVqxoRYoUsRtvvNHKli0bsSw5eaVuqJnzebVmaJv8qVatmvXv3986duxoZmaFChVyMh46dMjMLKh+3cgVaI/q1atHPEtAuXLlbOjQodazZ8+g9/X7/fbjjz+GLUvg+FGhQgVP5DGjZi6Etskd7ZI32iZ3HIPzRs3kzQt148WaoV1wuRgpUoAFOkT8fr8VKVLEzIIP0mZmTz31lL3yyiuWmZnpWo7k5GTr16+fnT592vr27WuTJ092spiZFS6c3feW8+bkf/7zH9fy5KVhw4Y2dOhQM8tus0CuMmXKBH1pf/bZZ23Xrl0hv9Gzbds2W7VqlZNlyJAhEcuyf/9+W7lypS1ZssT8fr9zcztwA8zM7Pjx487B28xs+vTp1q1bN+fJiFBJTk62vn37WnJyspmZc3M758iicGXJqXPnzjZ8+HAzy95HhQoVstjYWKtYsWJQr/6rr75q+/btc+XG4H//+1/btGmTk+fee++NWJ7LrZlQPglxuTXj1lMZ1Eyw3bt322effWZ//vOf7ccff7RSpUqZ2f9qxu/32/Hjxy0tLc05Bk6dOtWuv/56O3ToUMhrpkOHDvavf/3LzMy5gWtmYc9yrkjXDTWTO6/VDG2TP2fOnHH+v3LlyjZ48GAzCz5X5dzOzOy3v/2tzZo1K+RZNm/ebG+99ZadPXvWKlWq5GQ5d+R0OLKcPn3a/H6/paenW9myZZ0v7Oe2S+D7gs/ns2nTplliYmLIs5hlz9P+xBNPWHp6usXFxTl5zm2bcOShZvJG2+SOdskbbZM7jsF5o2by5qW68VLN0C4IJTpFrgAxMTFBXzADNymmT59uU6ZMsW7dujlfSkNt3bp11qFDB2vUqJEVK1bMrrrqKjP73wEpIyPDUlNTLSsry5lWYfLkyRYfH2+HDx92JVPAli1bbMKECTZs2DCbM2eObdu2LdftsrKynGFs06dPtwkTJtjx48dDmiU5OdlatWrl3MQNkBR0UykcWdavX2/x8fE2dOhQGzx4sDVu3Njmz59vx44ds0KFCjm15PP5LCYmxkqWLGmzZs2y2bNn2+eff+48mRoK69ats7Zt21p8fLw1b9486Gc5azocWbZt22ZPP/20TZo0yf7yl7/YqVOngt4/ICsryzmpTZs2zR544AE7ceJEyHIErF271lq3bu1MpxbIkFvNuJ0nFDUTqichQlEzocpCzeRt/fr11rZtWxs3bpyNGjXKmjdvbs8++6zt2bPnvJrx+XxWsmRJe/LJJ+3555+3lStXWqVKlUJaM+3bt7dbb73VedorIOew93BkMfNW3VAzufNazdA2+ZOSkmK//OUvrUePHnbLLbfYsmXLnBsXhQoVcvJVqFDB6VSaPHmyTZ8+3fr27RvSLOvWrbOGDRva8ePHrWjRomb2v/bJ+e8PR5YNGzZY37597frrr7fWrVvb22+/bXv37jUzC6qfcuXKWWxsrJNl9uzZNmzYsJBmMctumyZNmljRokWd7w1+v/+8GwjhyEPN5I22yR3tkjfaJnccg/NGzeTNS3XjpZqhXRBy560yggIpKytLkjRjxgyNGDFCzz77rGJjY7V69WrX3nPdunUqUaKEHnvssaDXcy527Pf7dfjwYVWtWlU7duzQ448/rpIlS2rlypWu5ZKklJQUxcXFqVevXhowYIDi4uLUvXt3vfrqq+fljI+P17x58/T888+70mbJyckqXrz4BRdXOnv2bFiyHDp0SA0aNNDkyZO1fft27d27V4MGDVLDhg01Y8YMHTp0yNn24MGDatGihQYNGqSiRYvq22+/DWmWDRs2qFixYpo+fbqk7Fo5evSoduzYcd624chSpkwZ3XDDDerUqZMKFy6sAQMGaMmSJc42GRkZOnPmjK677jq99957eu6551z7jCUnJ6tEiRIaM2ZMnttkZmaGJQ81k3cWaiZ3x44dU8uWLTV+/HgdPHhQWVlZevTRR9WuXTvddddd+uGHH5xtT58+rWbNmikhIUFFixbVqlWrQpolJSVFV111lX79619Lyq6ZPXv2KDk5+bxt3c4ieatuqJncea1maJv82bJli0qXLq0RI0boscce08CBA+Xz+TRjxgzt2rUraNvHHntMo0aN0uOPP66rrroq5OeHvK6P/X6/pOzPVbiybN++XWXLllViYqL+8Ic/6KGHHlLZsmU1YsSI897rueee02233aaZM2cqNjY25Fmkn2+bcOahZvJG2+SOdskbbZM7jsF5o2by5qW68VLN0C5wA50iV5hZs2bJ5/MpLi7O1S+g+/fvV5UqVZSQkCAp+0TxyCOPqE+fPmrQoIF+//vf6/vvv5ckpaen6xe/+IW6d+/uys3Jc505c0ZDhgzR/fff77y2detWDRo0SO3bt9fzzz8ftP3NN9+sMmXKqESJEiHvrNmyZYtiY2M1ZcoUSdmdH4sWLdIrr7yijz76SKmpqWHLImXf0KhVq9Z5+2DChAlq0qSJnnnmGaWlpUmSNm7cKJ/Pp2LFimnt2rUhzXHkyBHVrVtXLVq0cF4bNmyYWrVqpauvvlqdOnXS2rVrnZOKm1lOnTqlm266SYmJic5rq1evVuvWrdW9e3d98MEHQdt36dJFdevWVfHixV35jG3atEnFixfX5MmTJWXfIF26dKn++te/atmyZedt73YeauZ81MyF7dq1S9dcc43+8Y9/BL3+hz/8QfHx8XrwwQd1+PBhSdLu3bvl8/lUtGhRrVu3LqQ5fvrpJ3Xo0EE1atRwXhs8eLCaNGmiEiVKqFGjRnr//fed+nUzi+StuqFmcue1mpFom/yaOnWqevbsGfTa3LlzVb58eU2YMEEHDhxwXh8zZox8Pp9KlCgR8mvSzZs3q1SpUhoxYoSk7IeW5s2bp8cee0yPPfaYtm7dGrS9m1kkafbs2erUqVPQa++8846aNm2qu+66S999953z+hNPPCGfz6dSpUq5kmXHjh0qW7as7rjjDknZbfP000/rvvvu0+23365ly5Y5D3mFIw81kzfaJne0S95om9xxDM4bNZM3r9SN12qGdoEbmD7rCpOQkGBmZv/+97+tdevWrr5XfHy8HT161D766CO76aab7LvvvrMGDRpYt27dbO7cufbss8/aDz/8YIcPH7aUlBT717/+ZatWrbJWrVq5mqto0aJ28ODBoGlA6tata88884w1aNDA3nvvPfv444+d7YsVK2bp6em2YsUKa9OmTchyZGZm2gsvvGAlS5Z0pvnp16+fTZ061Z588knr37+/DRs2zNauXet6loCMjAzLzMx0pms5ffq0mZk9/fTT1qVLF3vppZecacbKli1rDz74oK1Zs+a8aYouV/ny5a1Xr15WokQJ+/Wvf21t27a1/fv32wMPPGAvvviiZWRkWL9+/Wz79u2uZylWrJgdO3bMKlSoYGbZQx5btmxpf/7zny0zM9NeeeUVW7dunfMzv99v+/fvtxUrVoT8M5aRkWGTJ0+2EiVK2M0332xmZrfeeqs9/PDDNnLkSOvWrZuNGjXKWTfI7Txm2XOmeqVmevbsSc3kIMnOnj3ruZqJiYmx4sWL2759+8zsf3Oojho1ym699Vb78ssv7ZtvvjGz7OHETz75pK1bt86aNm0a0hxxcXHWr18/q1evnt19993WunVrO3nypE2bNs2++eYbq1+/vo0dO9b+/e9/u57FLLtujh49GvG6ycrKssmTJ1vx4sWpmXN4rWbMsqdsKFasmCfa5pZbbrG6det6pm1yCpybzP7XRg899JA98cQT9sILL9hf//pX5+e1atWyOnXq2H/+85+QX5OuXLnSUlNTrUGDBvbDDz9Y165d7Z133rFly5bZ0qVL7Re/+IV9+umnYckScOLECUtNTXWmAbnjjjts2rRptnz5cluwYIEzbWujRo2sSZMmtnz5cleypKSkWIkSJaxixYq2evVq6969u/3973+3/fv324kTJ+yGG26wl156ydne7TzUTN5om9zRLnmjbfLGMTh3XqmZFStWeK5mzLxRN16rGTPaBS6IdK8MQu/c0Qdu2bdvn+666y4VK1ZMPXr00JEjR5yfvfPOOypTpow++eQTSdKcOXOUkpLieqbMzEydPXtWw4YN08CBA5Weni6/3+/01G7fvl3x8fEaNGiQ83f+9a9/nTdEM1S2bNmiESNGqH379qpRo4Z69+6tTZs26dSpU/r2229VrVo13XXXXc72X3/9tWtZAtq0aaMuXbo4f05PT3f+u3Xr1ho8eLDz59OnT4f8/XP2mo8dO1aVK1dWnz59gp4GkaTGjRvr7rvvdjWLJJ08eVJdunTRyJEjJWXXUEZGhqTsURLVq1fXww8/LCl7OOSCBQtyna4pVFavXq2EhAT17NlTDRo0UK9evbRmzRrt2rVLn376qYoWLapJkya5mmffvn1Bn9fWrVtHrGb27dsX9JTxmDFjIlYzgdo9ceKEunTpol/96leSIlczgaHc3377rRISEpSQkBCxmklLSwuaOvHmm29WixYt9NNPP0mS0z6SdOONN6pz587OnwPTB4Yyy6lTp5w/z507V40aNVLPnj21d+/eoG07duwY9JRaqLNI2U/Mr1q1SpmZmRGvm927d2vnzp3auHFjxGvmXDfddFPEauZcc+bMiWjNZGVlBZ0rb7vtNjVp0iQibZOVlRX0O19++WVdd911EWubvDz//PMqVaqUkynn8WjmzJkqWbKkc321Z88e7d6927Usc+bMUdWqVVWzZk3dfPPN2r17t9LT03X69GmNHDlSZcqU0Z49e8KSZeHChSpWrJjWrFkjKbhdXnrpJRUtWlQbNmyQlD0i8+DBg65lkaS//OUvzgjPwHk8UCe/+c1vdNVVV2nTpk1hyTN37lzP1Mzzzz/vmZoJ5PFK23jp80TN5I22yR3H4GA571NFumZOnjzp/LeXakaS5s+f75m6efvttz1z3l6wYIFn2iXSnyWEDp0iuCx79+7VpEmT9MUXX0gKnkOvbt26zhx7OedhdMO5v3/p0qUqVKhQ0FRZgW2WLl2qmJiYoOF1bmbZtm2bhg4dqj59+jhTigUsWrRIPp/vvNdDJTU1VSdOnNDx48ed19asWaNKlSrpl7/8pfNa4AbL2LFj1bdv37BlkbKHQb7//vvnzdk5YMAADRw40JUsR48e1aZNm7R582ZJ0scffyyfz6f3339fUvBNoL/85S8qW7asdu7c6UqWQJ6NGzc6dbBp0yZdf/316tGjx3nv+8ILL6hChQqudZ7t2bNH5cuXV//+/bV8+XJJ0tq1a1WhQoWw10xuWSTpmWeeCXvNrF27VjfddJNzMf/uu+9GtGbWrl2rPn36OBf0ycnJEauZ7777Tn369NFXX33ltM/hw4dVu3Zt9ejRI+iCVcq+wdGxY8egG7tuZAlM4yNJb775phYtWuTcaA689+jRo9WtW7eQ5wjYsGGDatSo4azbMX/+/IjVzYYNG1S9enU98sgjkqRVq1ZFrGZ2796thQsX6v3333e+2ESqZnLLIkWuZlJSUjR06FB16dJFw4YN09/+9jcdOnRIzZo1U5cuXcLaNjmz3Hvvvfrwww8lSX/961/1/vvvh71tLuTMmTPq1KmT2rdv7zykE+gY379/v2rUqOF87sJhzpw5ateu3XnTJGzcuFHly5fXokWLXH3/nNfj/fv3V40aNZwv5DkfbKhbt67mzp3rahYp+Np4/vz5uvnmm4PO61L2FG0VK1bUyy+/7HoeKXtKw86dO3umZubOnRuxmvH7/UH7KD09PWJtc24WKXJtc/To0aC189LS0iLWLudmkbKnUYxUzWzdujVoqudIfp7OzSJFrm22bt2qDz74IOg4G8ljcCBPzoeFInUM/v777zVkyBDn2jI1NTViNRPIknNdtkh+ntLS0nTs2LGg/XTLLbdEpG4CWXJ2YL3zzjueOG9L2Q/eRfqaJuDtt9/2TLvg0tEpgst2/Pjx8xZXP3LkiOLj4/XnP//Z9fffvHmzZs+erX379gW9Pnv2bMXExAQtri5lP4nfsGFDV2485ZVl165dWrx4sXPzK/Bl9b333lODBg30448/hjxLSkqKevbsqRYtWqhq1ap6++23JWVfbMyfP18VKlTQwIEDdfbsWefGxpAhQzR48GBlZGTkukhUKLPk/MJz7k0ev9+vgQMHBi2oHSrfffedWrRooSZNmqhIkSKaOXOm0tPT9dBDDyk2NlYff/xx0PZ/+9vf1LBhw6CRUKF0bp7AArbff/+93nvvvfNq5oUXXlCTJk1cGznz5ZdfqnDhwuratavuuusu5ybhggULVLZsWfXr1y8sNZNblhUrVjg/y3nRKLlbM8nJySpWrJgmTJjgvJaRkaFRo0YpNjb2vItkt2vm3Dw511F57733nM9TOGomsHD4Aw88oP/+979BP1u+fLmqVq2qG264QVu2bHHef/jw4erdu/d5n3s3s0jBF80Bd955px566CH5/f6Q129ycrKKFy+u2rVrq3Llytq/f78kOceawEjKADfr5twsgXNU4DgTuKkdjppZv369rrnmGrVu3VqVK1dW3759nQ7q5cuXq3r16mGrmdyy5HxIIbf3c7NmNm3apLJly2r48OF67rnnlJCQoDp16ujhhx/WN998o8aNG+v6668PS9vklqV27dp69NFH8/w7brZNTps3b9b48eN1zz33aM6cOdqyZYsk6YsvvlDbtm3VrVs3HT161Nn+2LFjatCgwXnndzeybNy40fnZ6tWrnXNVoD3WrVunhg0burI2z8GDB4OuJwPn6Q0bNuj6669X7dq1g55uTUtLU4sWLVy7Vs8rj5R9vgrUcKBttm3bpqZNmzoPWoXSjh079Lvf/U5jx47VggULnPf9+OOPFR8fH9aayS1LQHJyclhrRsqu4Ycfflh9+vTRzJkznXPQJ598Eva2OTdLzidrw90227dvV506dTRt2rSgUXGffPKJOnToENZ2ySuLFJmaWbt2rUqXLq1XXnkl6PVI1My5WXIeZ8LdNuvWrVPFihV1//33a+/evc57btiwQfHx8WE/BueVR8r+bh7OY3Dgu4vP59Of/vQn530//fTTsNdMblly/izcn6cNGzbopptuUsOGDdWvXz/ne2Ukzt3nZvnoo4+cn4X7vP39999r4sSJGjJkiJ599lmtXr3aec927dqFtV3OzZKz42z9+vVhbReEHp0icMX06dNVr169oN53N2zdulXlypWTz+fTpEmTnMVGpewD48yZM+Xz+TR16lStWbNGR48e1cSJE1W3bt3znrZxM4uU+03acePGKSEh4bzRE5crJSVF5cuX15gxY/TOO+9o7NixKlKkiHODOy0tTYsWLVL16tXVoEED9evXT7fffrtKlCgR8hE0eWXJa/HrjIwMTZ06VVdfffV5C5uFKsu4ceOUkpKi2bNny+fzae/evdq7d6/uv/9+FSlSRC+99JL279+v06dPa+LEiWrWrJmOHTsW0iwXyhP43OS8sA94+OGHNWDAgKCn4EPp6NGjuvnmm/Xyyy+rZcuWuuOOO5wbTh9++KEaNWqk+vXru1ozeWW58847tX79eknBbeNmzaxbt04lSpRwRr0FZGZm6siRI0pMTAxrzeSV50I3r92qmdTUVPXs2dOZDkrKvpG6du1a5yJ1w4YNatSokerVq6e2bdvqlltuUcmSJUO+8PKFsuR2Hjp9+rSmTJmiSpUquTJSL/CFa/LkyTp8+LAaNWqkWbNmScq+ITZixAgVKVJEL7/8sut1c26Wxo0b6/HHH3c6pnM7N7lVMz/88IOqVaumiRMnKjU1VX/7299UpUoV/ec//3G2CVfN5CdLTm7XTHp6uu68806NHj066D2bN28un8+nX/7yl1q/fr3atWunOnXquNo2eWVp0aKFfD6fs7Bkzp+52TY5paSkKC4uTr169dKAAQMUFxenrl276q233pKUPfKzbdu2ql27tv7+97/rn//8p6ZOnaoqVaqEfORTblm6d++uefPm5fl3JkyYoNatW4f8GnTjxo0qWrSoBg4cmOs15cqVK9W5c2eVKVNGL7/8subPn6+JEyeqfPny2r59e0izXChPbtc1AVOmTFHTpk3Pe7Docq1fv17Vq1dXt27d1KFDB8XExOjpp5+WlH0u/7//+z/nhqXbNZNblmeeeeaCf8etmgnkqVSpkgYOHKgHHnhARYsWdR4uyczM1MKFC52bT+Fom3OzBB4UyoubbTNv3jz5fD61aNFCTzzxhNMZkZmZqQULFoTtOJNblsBDFnlxs10CD1mMHTv2vJ9lZmbq3XffDVvNXChLXtxqm127dqlmzZrnXZ8HrF+/Xh07dgzbMfjn8uTGrWNw4Dp0/PjxGjdunDp27Oh8nrKyssJ6DM4ty/79+y/4IIebn6eUlBSVLVtWiYmJmjdvnq6//npnZga/369Vq1apU6dOYamb3LLccccdF2wbt2omJSVFZcqU0W233aaRI0eqRo0aat68udP5+d1334Xt85RblpYtW+qFF17I8++41S5wB50iCKn58+drxIgRKlu2bNA0FG5ITU3Vvffeq3vuuUdJSUny+Xx67LHHgk5YWVlZevPNN1WlShVVq1ZNDRo0UNWqVZ2eZrez5OwYyXlC2bBhg6ZMmaLSpUs7N3lD5ejRo+rZs2fQzQxJ6ty5sx566KGg106cOKHx48frvvvu06hRo0K+7kt+suRsl88++0x9+/ZVlSpVQl4/hw8fVqdOnZw5+wPvnZCQoBUrVmj9+vVauXKlXnzxRRUtWlS1a9dW06ZNVbFiRVdqOa88vXr10jfffOPM7x+wbds2TZs2TWXKlHHmygy1zMxMHTp0SNddd5327NmjDz74QG3atNHw4cN1ww036Pbbb9eJEyc0btw412rm57Lcf//96tChgwYMGCBJWrJkiWs1s3//flWpUkUJCQlOpkceeUQ33nijGjVqpD/84Q/68ssvNXfu3LDUTF55+vTpowYNGuj3v/990FPK27dvd7Vm0tPT9f/+3//TmjVrlJmZqYSEBLVp00YlS5ZUu3bt9Mc//tHZdu7cuZo4caJmzJjh2g3l3LKUKlVK7du3D8ryySefqFu3bqpWrZor+2ndunWKjY3V5MmTJWWfhwYOHKhWrVo52+zbt09PPvmkihYtqjp16rhWN3lladOmjbNNzpuUbtfMyy+/rM6dOwcd93v37q2XX35Zb7zxhr788kvndbdr5kJZ3nzzTf3zn/90Xne7ZgK6devm3AQMdHSOHz9et956q1q1aqWkpCRJ2VM8uNk2F8oyYMAAtWzZUs8++6wk6dNPP1X37t1dbxspe+TOkCFDdP/99zuvbd26VYMGDVKbNm2caQo2btyoX/7yl6pYsaKuu+46NW7cOOTXfRfK0r59+6DpWyXpm2++0ejRo1WmTBklJyeHNMuBAwfUoUMHde3aVRUqVNBtt92Wa8fIsWPHNHbsWDVs2FD169dXu3btXNln+c0TsGTJEiUmJqps2bJ5PjBzqX744QfVrVtX48ePd451r732mipXrux8dvx+v5KTk3XnnXe6WjMXyhJ4+CQnN2tGyu6gr1WrlrN+lCT9+te/1oMPPhg0snLjxo0aPHiwq21zoSy5rU3kdttI2efPu+++W7NmzVLVqlX1m9/8Jmgk55YtW3THHXe42i4XypLbLANut8uWLVsUGxurKVOmSMpeN2rRokV65ZVX9MEHHzijTjds2OD6MfhCWT766KOg9SIk99vm448/Vu/evZ0sU6ZMUb9+/XTvvffqL3/5i6Tsa9XRo0e7fgy+UJ777rtPb775ZtC2bh6Dv/32W5UuXdq5Dp0/f77i4uL09ddfO9uE6xj8c1nO7bR3u2ZOnTqlfv36Bd0L+Oijj9S/f3/t37/fOQ6Ho24ulOXgwYNBnye/3+9qzZw8eVIJCQkaP36881pgSu2KFSvqt7/9rbPdI4884mq7XChL5cqVnQfeAtxsF7iHThGE1Lp169SnTx/XbtrmdOrUKSUlJTlDzxcuXJhrx4gk7dy5U1999ZUWL17sLJIVriznjhjZuXOnevXqpTp16rhysDxw4IDatm2rZcuWSfrfCX7YsGG68847JSlo8fmACz2952aWAL/fr61bt2rChAnOolShdOTIET355JNBXzwff/xx+Xw+NW3aVDVr1lSvXr2ctT0WLlyoBQsWuDba6UJ5mjdvrho1aighIUFff/21tm3bpltuuUW1atVy9QQbuDl45513asmSJZKyb3hVqFBBJUuWDLqxLLlTM/nJUqpUKWe489atWzV+/HhXamb//v3q37+/WrdurQ8//FC9evVSt27d9Oijj+rBBx/Utddeq/vuu0+pqalat26d6zVzoTyJiYmqXbu2hg8frl27diklJcX1mjlw4IAqVqyozz77TGPGjFFCQoLWrVunxYsX67HHHlOVKlWcL4Juy0+Wd999V1L2SLknnnjCtZvJK1eu1LRp0yT97zPy/fffKy4u7rynityumwtlefHFF4O2DUfNzJs3T3Xq1HG+tMyaNUs+n0/du3dX69atValSpfOm43DLhbK0adNGlSpVco4zbteM3+9XWlqaOnbsqKFDhzo3lvbs2aNrrrlGr7/+uoYMGaKOHTu68v6XkqVLly6S3G+bc/Xo0UMjRoxwskrZT8Tec889uv766/W3v/3N2XbTpk3au3fveddh4cjSsWNHZwqM3bt3a9asWWrZsmXIR/VI0uLFi3XHHXdo1apV+s9//qNy5cpdsCNiz549+vHHH12ZuvVi85w8eVJz5sxR+/btQ/6QUFZWlp5++mn16tVLP/30k/N6YLRGbjXrVs1cbJY9e/a4WjOZmZl69tln9atf/Spov9x3332Kj49XmzZtNGLEiLB8nvKTZeTIkc7nad++fa62TUBycrLq1asnv9+vmTNnqkaNGpozZ45uueUW57wquX+cuVCW/v37Ox1Jbh9nMjIyNHr0aJUvX965nurdu7eaNm2qWrVqKSYmRrfeemvQ59ittslPlttuu805v7vdNlL2wuDt27eXJHXv3l2dO3fWww8/rB49eqhZs2bOjXjJ/WPwz+Vp3ry5UzenTp3S888/78oxODU1VSVKlHDW1Qvo1q2bunbtmutaaG7VzMVmcfsYLGWfFzp27KiZM2c6r40bN061atVStWrV1Llz56COYjfr5ueydO3aVRMnTpSU/VCIW+dtKfu6sk2bNs53yMCo9dtuu03dunVT+/bttXjxYmf7vXv3utYuP5elQ4cOznnyxIkTrn2W4C46RRByoZ7X+kJyLgAlZa974PP5NG7cOOdkmpGR4dpisfnNEniyKPD0+86dO13NlPNGe+AJq6lTp2ro0KFB2+X88uHW/N/5zRI4yZy7uGIonThxwvnvwILHCxcu1NGjR7V06VK1bt3amTYgHC6U56uvvlKbNm00c+ZMnT17Vv/85z9dXbg7p7vuusu58Bk+fLjKli2rRo0a6d577w1aSMzNOePzkyWwqKKbNbNv3z7dddddKlasmHr06BH0lODbb7+tuLg4V+a7vZQ877zzjsqUKeNcKH755Zeu1ozf79fgwYM1atQo3XTTTU7nlZT9BXTIkCEaOXKkMjIynBvybtVMfrI88MADuT5x6ja/36+ffvrJmXIu0B5udirmN0tmZqaT48yZM67XzI4dO9ShQwfVrVtXAwYMkM/n04cffii/36+DBw9q9OjR6ty5sw4fPux6zeQ3ixvTJeTl66+/VkxMjDp16qShQ4eqRIkSuu+++yRlTxVQqlQpbdq06YJTn4UrS8mSJYNGprktMzNTZ8+e1bBhwzRw4EClp6cHPeCxfft2xcfH6/bbb3f+jlvtk98sgwYNcnIcOHDAtXWmDh06FDTKavny5U5HRM4b8LndgIpkngC/3+/KdJOS9NVXXznXEAFZWVmqVatWUMZwuNgshw4dcvVG++7du4Ou6X7zm9+oUKFCmjJliubOnas2bdqoa9euzjQ3bh5v8pslcDx28/OUU8+ePZ1z4jPPPKMSJUooLi4u6BojXOfyvLL8/e9/l5S9f/bv3+9qu2zZskUjRoxQ+/btVaNGDfXu3VubNm3SqVOn9O2336patWpB3+/crJn8ZLnrrrucHG7XzOeff66uXbvqj3/8o3r06OE8hPnTTz85HRS5TQEcyTyBc3h6erprHTQ5rykD1y6vvvqqrrvuOmckSFZWllMrbtZMfrMEuFkzWVlZOn78uBISEtS/f38lJSVp0qRJKlasmP70pz9p8eLFmjlzplq2bKkPPvjgvGyRyhLonHarZgLX4FWrVnVGJEvZ54hGjRrpzTffVNOmTZ3r0cDfccOlZDlz5oyrnZ1wB50iuCJkZmY6B8TAzeXHHntMe/fu1ZgxY3TrrbcqNTU1LDdxfy5Lv379XFsk+1w5T55Tpkxxpt2RpCeffFLPPfdc2L4k/1yW2bNnhy2LlD2NwbnDcvv06aObbropbBnyk6dv375hyxCo2zfeeEMzZszQr371K1199dXasWOHPvjgA1177bUaOXJkrgtWRyLLAw88EJbP0t69ezVp0iRnsbScx5G6detq3Lhxrme4mDwXM3/w5Vq1apVKlCghn8933oLzjz76qDp16hSW467XsuTm/fffl8/nC5oyIBqz7NixQwsXLtSMGTM0cODAoJ89/fTTatasWdjOkV7KErBy5UoNGTJE9913nzNdlpQ9jUHDhg1zval8JWc5t9N76dKlKlSoUND0VIFtli5dqpiYGFenmLzYLG6tuZXXwwCBa60VK1YEjdA4e/asXnzxRX322WeeyZOUlORKnryyBI7/WVlZql27dtB7/+Mf/3ClA/RSsnz22WeudYbklefIkSN65JFHgp6+3bhxo3w+X9Brkc6Sc+RKOLJ07tzZmWpo+PDhKl26tKpUqaJnnnnmvAXPI5nFjVkQ8sqzbds2DR06VH369DlvhNOiRYvk8/m0efNmz2RxaxTjuVk2bdqkqlWrqlGjRurevXvQz/773/+qePHiro6evpQ877zzjutZcrvuPnnypGrUqKHExERX3v9ys7j5XeHc/bRixQr16tVLd9xxh+rXr6/XXnvN+dmBAwdUs2ZNPfXUU1GX5YUXXpDP59O9996rqVOnqmTJks50pe+++65q1aqlI0eOuNJR5KUsCA86RXDFyPmU3oIFC1SkSBHVr19fhQsXDvucfhfK4vac27llkbI7Im688UZJ0rRp0+Tz+Vybh7cgZMkpKytLp0+f1qBBg/TEE09ELIdX8nz11Vfy+XyqUqWKvv32W+f1v/71r9qxY0dUZjl+/HjQKDi/368jR44oPj7etS8Vl5rn7bffDmuWZcuWyefz6aabbgq6GTl69Gjdd999YR2d4aUs5zpz5ox69uypO++8U6dOnYpYDq9kefXVV9WnT5+gOh4zZoxuueWW80ZeRlMWKfcv5OPGjVPnzp0vuDbDlZZl8+bNmj179nkLVc6ePVsxMTF69dVXg15fvXq1GjZs6Mpop4KQ5VyBqatuv/12DRs2TEWKFNG2bduu6Dy5ZclZwxkZGUpNTVXdunW1YsUKSdKkSZPk8/lCfpPbS1nyypNTYMR24DvM+vXr1bJlS1emAfF6lsC1woQJE/TnP/9ZDz30kKpWraodO3boySefVPHixfXcc8+FfKSyl7LklUfKniZw8eLFTrZAXb/33ntq0KCBK09KF4Qsn3zyiQoXLqxKlSrp3//+t/P6mTNn1LVr16ARRldqnp/7bAfqNCkpSddee23Qd7srOcuF8qSmpiozM1Px8fFauHCh8/rZs2fVo0cP56GUUHbWeD1LVlaW3njjDbVp00a9evVy1hGRstfVa9GihSudV17KgvChUwRXFL/f7xyUunbtqnLlykVsTj+vZAl0zsyYMUMjRozQs88+q9jYWNcWAywoWc41bdo01axZM9fFLiMhknnOnj2r1157zZlDNZInei9lOdf06dNVr14919YQuViRzPPVV1+patWqatu2rYYPH66hQ4cqLi7OtaekC0qWcz311FMqXbq09u/fH+koEc+SkpKiuLg4PfPMM3rrrbc0fvx4lSlTJiLnSS9lOdf69ev14IMPqnTp0hF9eCDcWbZu3apy5crJ5/Np0qRJQU/Op6WlaebMmfL5fJo6darWrFmjo0ePauLEiapbt27In/gvKFly8/XXX8vn86lcuXKuXGt5KU9+sgQeOgncAHv88cdVokQJZzrOKzHLz+XJa9qayZMnq127dmGtYS9lkaTXX39dPp9PV199tVatWuW8/tvf/jbk1+deypKfPHl1mCckJIS8w7wgZZk/f75iYmKUkJCg+fPna+vWrZo4caKqVq2q//73vyHN4rU8F3M+CExxlnMU6pWa5efyZGVlKTU1Ve3atdO0adP0448/6uTJk5o2bZozS0I0ZpGk06dPnzdDxahRozRw4ECdPn06pPcFvJQF4UWnCK44mZmZGjNmjHw+n6sL8BW0LIFFZOPi4oIupqM9y//93/8pMTFR5cuXD/soHi/n8dIQUC9lkbK/YIwYMUJly5b1RM14Jc/333+vqVOnqnv37vrVr34V0U4IL2WR/veF/dixY2rVqlXY1gfyepZ//vOfuvbaa1WvXj117tw5oudJL2UJSE9P1wcffKDBgwdHPE84s6Smpuree+/VPffco6SkJGca0pw3RLOysvTmm2+qSpUqqlatmho0aKCqVauG/EZ7QciS182eM2fOaOTIkSpVqpRSUlJCmsVreS42S4sWLdSmTRsVLVo05NehXspyKXlSUlI0depUlS5dOuSf9YKWZfPmzZo6daoz44Bb16NeypLfPDlvAG7YsEFTpkxR6dKlXVmsuyBlkbKn44uPj1flypXVoEEDXXfdda5cn3spz8V+tiXp7rvvVv369XX27NmQ3lD2UpaLybNw4UL5fD5dd911ateuna655pqI7SevZMm5LzZt2qRHHnlEpUqVivhxxs0sCD86RXDFyczM1B//+MewT5nl9SyrVq2Sz+dz5YtxQc6yYcMG3X777WFdMPZCvJYH51u3bp369Onj2rz1F8treSK1iHhuvJRFyr6gjsR0TLnxSpajR4/qwIEDnliY0EtZAtLT0z2xn6TwZTl16pSSkpK0YMECSf/7cn5uZ4SUvXDqV199pcWLF7syr35ByZLbzZ6VK1eqcePGrow88Fqe/GbJzMzU0aNHFRcXp0KFCrlyM8NLWS4mj5Q9FVH//v3VsGFDV0aDFcQsgam8JPdGK3spy8XkkbKPe7169VKdOnVc+b5bULMcOXJEW7Zs0dq1a11bI8hLeS4mS6B2V6xY4cpUyF7KcrF5vv76a82aNUvz5s1z5aGlgprlxIkTmjt3rm644YaIf7bdzoLwo1MEVyQvDV/zUhav3FiRvJUlkusM5MZreXC+nGsPeIHX8gDA5Tj3GmHBggXy+XwaN26c8wU1IyNDu3btIsv/n+XIkSOSsjuDA9OiHDt2LGry5CdLRkaGDh8+rCVLlrj6IIGXsuQ3T2Zmpg4ePKjdu3dr9+7dUZ8l0OmZlZUVljXsvJTl5/Lk3E+HDh3Szp07XT3+FbQsGRkZYRuF66U8+T0fbN++Paqy/FyewHXE2bNnXetAK4hZzj0fZGRkRPwaIlxZEF50igAAAADwnMzMTOfhkvnz5ztP7u3du1djxozRrbfeqtTU1LA8gFKQsvTr10+nTp1yPYcX8/xclv79+wc9cR8tWfKTp1+/fjp9+jRZcvlse6VmwpklP3m8tJ+8lCWc5wOv5clvDUdblvzk6d+/v2f2k5eyeOkaItzXV3AfnSIAAAAAPMnv9zvT4C1YsEBFihRR/fr1Vbhw4bBPXVBQskRifSkv5ckrS6FChTyznyKR5UJ5vLSfvJbFKzUTiSw/l8dL+8lLWby2n6K5hr2UxWt5CkoWL322vbCeKELLJ0kGAAAAAB4U+Lri8/msW7dulpycbEuXLrUmTZqQxSNZvJaHLAUjD1m8n8VrechSMPKQpWDkIYv3s8Bl4eyBAQAAAICLlZmZqTFjxsjn82ndunVk8WAWr+UhS8HIQxbvZ/FaHrIUjDxkKRh5yOL9LHBPTKQ7ZQAAAADg5zRu3NjWrFljTZs2jXQUslyAl/KQJW9eykMW72cx81YesuTNS3nIkjcv5SGL97PAHUyfBQAAAMDzJJnP54t0DDMjy4V4KQ9Z8ualPGTJnZeymHkrD1ny5qU8ZMmbl/KQJXdeygJ30CkCAAAAAAAAAACiAtNnAQAAAAAAAACAqECnCAAAAAAAAAAAiAp0igAAAAAAAAAAgKhApwgAAAAAAAAAAIgKdIoAAAAAAAAAAICoQKcIAAAAAAAAAACICnSKAAAAAAAAAACAqECnCAAAAAAAAAAAiAp0igAAAAAAAAAAgKhApwgAAAAAAAAAAIgK/x8y8U1+p6TzVwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "fig, axes = plt.subplots(2, 1)\n", "axes[0].bar(hist_bins, hist0, width=bin_width, label=\"channel 0\")\n", "axes[1].bar(hist_bins, hist1, width=bin_width, label=\"channel 1\")\n", "axes[0].set_yscale(\"log\")\n", "axes[1].set_yscale(\"log\")\n", "\n", "axes[0].set_xticks(np.arange(hist_bins.min(), hist_bins.max(), step=50))\n", "axes[1].set_xticks(np.arange(hist_bins.min(), hist_bins.max(), step=50))\n", "axes[0].tick_params(axis=\"x\", labelrotation=45)\n", "axes[1].tick_params(axis=\"x\", labelrotation=45)\n", "\n", "print(np.sum(hist0))\n", "print(np.sum(hist1))\n", "axes[0].legend()\n", "axes[1].legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### A) Define the Noise peaks by hand \n", "#### $\\color{red}{\\textbf{Requires User Input}}$" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (1366605978.py, line 5)", "output_type": "error", "traceback": [ " \u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 5\u001b[39m\n\u001b[31m \u001b[39m\u001b[31m**Requires User Input**\u001b[39m\n ^\n\u001b[31mSyntaxError\u001b[39m\u001b[31m:\u001b[39m invalid syntax\n" ] } ], "source": [ "noise_peak_cutoff_ch0 = 104\n", "noise_peak_cutoff_ch1 = 12" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9989\n", "9819\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAAL1CAYAAACSWlg1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBwElEQVR4nOzdeZRU1bk34LeZZxAUGhQEA4oaB5zbRIOAghIiinGIU5yICWqUKIKKBq8DDrlRI2oGE/XGOYNRiRivcbgxoIiigsQRFUVAIYCANNC9vz/4ukJLNwJWdRXU86zVi+bU6VO/2mfXqarz1j67JKWUAgAAAAAAoAjUy3cAAAAAAACAuqIwAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEVDYQQAAAAAACgaCiMAAAAAAEDRUBgBAAAAAACKRoN8B9gYlZWVMXv27GjZsmWUlJTkOw4AAAAAAJBHKaX47LPPolOnTlGv3rrHhGyShZHZs2dH586d8x0DAAAAAAAoILNmzYptttlmnetskoWRli1bRsTqB9iqVas8pwEAAAAAAPJp8eLF0blz50z9YF02ycJI1eWzWrVqpTACAAAAAABERKzX9BsmXwcAAAAAAIqGwggAAAAAAFA0FEYAAAAAAICisUnOMQIAAAAAAOujoqIiVq5cme8YfEUNGzaM+vXrZ2VbCiMAAAAAAGx2UkoxZ86cWLhwYb6jkCVt2rSJ0tLS9ZpgfV0URgAAAAAA2OxUFUXat28fzZo1+8on08mflFIsW7Ys5s2bFxERHTt2/ErbUxgBAAAAAGCzUlFRkSmKtGvXLt9xyIKmTZtGRMS8efOiffv2X+myWiZfBwAAAABgs1I1p0izZs3ynIRsqtqfX3XOGIURAAAAAAA2Sy6ftXnJ1v5UGAEAAAAAAIqGwggAAAAAAFA0TL4OAAAAAEDR6DpyfJ3d13tjB2Z3e++9F926dYuXX345dt9996xuOxd69+4du+++e9xwww35jlKNESMAAABAwek6cnzmBwDYfD399NOxxx57ROPGjaN79+5xxx135Pw+FUYAAAAAAIA6N3PmzBg4cGAcdNBBMXXq1Dj33HPj9NNPj8cffzyn96swAgAAAAAABaKysjKuvfba6N69ezRu3Di6dOkSV155ZbV13n333TjooIOiWbNmsdtuu8XEiRMzt82fPz+OO+642HrrraNZs2axyy67xL333lvt73v37h3nnHNOjBgxItq2bRulpaXx05/+tNo6JSUl8Zvf/CaOOOKIaNasWfTo0SMefvjhautMmzYtDj300GjRokV06NAhTjzxxPj000/X+7Hedttt0a1bt/jZz34WO+64Y5x11llx1FFHxc9//vP13sbGUBgBAAAAAIACMWrUqBg7dmyMHj06Xn/99bjnnnuiQ4cO1da5+OKL4/zzz4+pU6fG9ttvH8cdd1ysWrUqIiKWL18ee+65Z4wfPz6mTZsWQ4cOjRNPPDFeeOGFatu48847o3nz5vH888/HtddeG5dffnk88cQT1dYZM2ZMHH300fHqq6/GYYcdFscff3wsWLAgIiIWLlwYffr0iV69esWLL74YEyZMiLlz58bRRx+93o914sSJ0a9fv2rL+vfvX63QkwsmXwcAAAAAgALw2WefxY033hg333xznHzyyRER8bWvfS2++c1vVlvv/PPPj4EDV0/sPmbMmNh5553j7bffjp49e8bWW28d559/fmbds88+Ox5//PF44IEHYp999sks33XXXeOyyy6LiIgePXrEzTffHE8++WQcfPDBmXW+//3vx3HHHRcREVdddVXcdNNN8cILL8SAAQPi5ptvjl69esVVV12VWf+3v/1tdO7cOd58883Yfvvtv/TxzpkzZ62iT4cOHWLx4sXx+eefR9OmTder3TaUwggAAAAAABSAGTNmRHl5efTt23ed6+26666Z3zt27BgREfPmzYuePXtGRUVFXHXVVfHAAw/ERx99FCtWrIjy8vJo1qxZrduo2s68efNqXad58+bRqlWrzDqvvPJKPPXUU9GiRYu18r3zzjvrVRjJF4URAAAAYJPRdeT4zO/vjR2YxyQAkH3rO0KiYcOGmd9LSkoiYvXcJBER1113Xdx4441xww03xC677BLNmzePc889N1asWFHrNqq2U7WN9VlnyZIlMWjQoLjmmmvWyldVrPkypaWlMXfu3GrL5s6dG61atcrZaJEIhREAAAAAACgIPXr0iKZNm8aTTz4Zp59++kZt47nnnovDDz88TjjhhIhYXTB58803Y6eddspm1Nhjjz3ij3/8Y3Tt2jUaNNi4UkNZWVn89a9/rbbsiSeeiLKysmxErJXJ1wEAAAAAoAA0adIkLrzwwhgxYkTcdddd8c4778SkSZPi9ttvX+9t9OjRI5544on45z//GTNmzIgf/OAHa43KyIZhw4bFggUL4rjjjovJkyfHO++8E48//niccsopUVFRsV7bOPPMM+Pdd9+NESNGxL/+9a+45ZZb4oEHHojzzjsv63nXZMQIAAAAAABFo9AvxTh69Oho0KBBXHrppTF79uzo2LFjnHnmmev995dcckm8++670b9//2jWrFkMHTo0Bg8eHIsWLcpqzk6dOsVzzz0XF154YRxyyCFRXl4e2267bQwYMCDq1Vu/MRndunWL8ePHx3nnnRc33nhjbLPNNvGb3/wm+vfvn9WsX1SSUko5vYccWLx4cbRu3ToWLVoUrVq1ynccAAAAIMtqm0vEHCMArI/ly5fHzJkzo1u3btGkSZN8xyFL1rVfN6RuYMQIAAAAsElTLAEANoQ5RgAAAAAAgKKhMAIAAAAAABQNhREAAAAAAKBoKIwAAAAAALBZSinlOwJZlK39qTACAAAAAMBmpWHDhhERsWzZsjwnIZuq9mfV/t1YDbIRBgAAAAAACkX9+vWjTZs2MW/evIiIaNasWZSUlOQ5FRsrpRTLli2LefPmRZs2baJ+/fpfaXsKIwAAAAAAbHZKS0sjIjLFETZ9bdq0yezXr0JhBAAAAACAzU5JSUl07Ngx2rdvHytXrsx3HL6ihg0bfuWRIlUURgAAAAAA2GzVr18/ayfU2TyYfB0AAAAAACgaCiMAAAAAAEDRUBgBAAAAAACKRtYLIz/96U+jpKSk2k/Pnj0zty9fvjyGDRsW7dq1ixYtWsSQIUNi7ty52Y4BAAAAAACwlpyMGNl5553j448/zvz84x//yNx23nnnxSOPPBIPPvhgPPPMMzF79uw48sgjcxEDAAAAAACgmgY52WiDBlFaWrrW8kWLFsXtt98e99xzT/Tp0yciIn73u9/FjjvuGJMmTYr99tsvF3EAAAAAAAAiIkcjRt56663o1KlTbLfddnH88cfHBx98EBERU6ZMiZUrV0a/fv0y6/bs2TO6dOkSEydOrHV75eXlsXjx4mo/AAAAAAAAGyrrhZF999037rjjjpgwYULceuutMXPmzDjggAPis88+izlz5kSjRo2iTZs21f6mQ4cOMWfOnFq3efXVV0fr1q0zP507d852bAAAAAAAoAhk/VJahx56aOb3XXfdNfbdd9/Ydttt44EHHoimTZtu1DZHjRoVw4cPz/x/8eLFiiMAAAAAAMAGy8mltNbUpk2b2H777ePtt9+O0tLSWLFiRSxcuLDaOnPnzq1xTpIqjRs3jlatWlX7AQAAAAAA2FA5L4wsWbIk3nnnnejYsWPsueee0bBhw3jyySczt7/xxhvxwQcfRFlZWa6jAAAAAAAARS7rl9I6//zzY9CgQbHtttvG7Nmz47LLLov69evHcccdF61bt47TTjsthg8fHm3bto1WrVrF2WefHWVlZbHffvtlOwoAAAAAAEA1WS+MfPjhh3HcccfF/PnzY6uttopvfvObMWnSpNhqq60iIuLnP/951KtXL4YMGRLl5eXRv3//uOWWW7IdAzY7XUeOz/z+3tiBeUwCAABQt9b8PAQA8FVlvTBy3333rfP2Jk2axLhx42LcuHHZvmsAAAAAAIB1yvkcIwAAAAAAAIVCYQQAAAAAACgaCiMAAAAAAEDRUBgBAAAAAACKhsIIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEWjQb4DALXrOnJ8viMAAADUGZ+BAIC6YMQIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEWjQb4DAAAAAMWt68jx+Y4AABQRI0YAAAAAAICioTACAAAAAAAUDYURAAAAAACgaCiMAAAAAAAARcPk61CATDwIAAAAAJAbRowAAAAAAABFQ2EEAAAAAAAoGgojAAAAAABA0VAYAQAAAAAAiobCCAAAAAAAUDQURgAAAAAAgKKhMAIAAAAAABQNhREAAAAAAKBoKIwAAAAAAABFQ2EEAAAAAAAoGg3yHQDYcF1Hjs/8/t7YgXlMAgAAAACwaTFiBAAAAAAAKBoKIwAAAAAAQNFQGAEAAAAAAIqGwggAAAAAAFA0TL4OAAAA1LmuI8fnOwIAUKSMGAEAAAAAAIqGwggAAAAAAFA0FEYAAAAAAICioTACAAAAAAAUDYURAAAAAACgaCiMAAAAAAAARSPnhZGxY8dGSUlJnHvuuZlly5cvj2HDhkW7du2iRYsWMWTIkJg7d26uowAAAAAAAEUup4WRyZMnxy9/+cvYddddqy0/77zz4pFHHokHH3wwnnnmmZg9e3YceeSRuYwCAAAAAACQu8LIkiVL4vjjj49f//rXscUWW2SWL1q0KG6//fb47//+7+jTp0/sueee8bvf/S7++c9/xqRJk3IVBwAAAAAAIHeFkWHDhsXAgQOjX79+1ZZPmTIlVq5cWW15z549o0uXLjFx4sQat1VeXh6LFy+u9gMAAAAAALChGuRio/fdd1+89NJLMXny5LVumzNnTjRq1CjatGlTbXmHDh1izpw5NW7v6quvjjFjxuQiKgAAAAAAUESyPmJk1qxZ8eMf/zjuvvvuaNKkSVa2OWrUqFi0aFHmZ9asWVnZLgAAAAAAUFyyXhiZMmVKzJs3L/bYY49o0KBBNGjQIJ555pm46aabokGDBtGhQ4dYsWJFLFy4sNrfzZ07N0pLS2vcZuPGjaNVq1bVfgAAAAAAADZU1i+l1bdv33jttdeqLTvllFOiZ8+eceGFF0bnzp2jYcOG8eSTT8aQIUMiIuKNN96IDz74IMrKyrIdBwAAAAAAICPrhZGWLVvG17/+9WrLmjdvHu3atcssP+2002L48OHRtm3baNWqVZx99tlRVlYW++23X7bjAAAAAAAAZORk8vUv8/Of/zzq1asXQ4YMifLy8ujfv3/ccsst+YgCAAAAAAAUkTopjDz99NPV/t+kSZMYN25cjBs3ri7uHgAAAChCXUeOz/z+3tiBeUwCABSSrE++DgAAAAAAUKgURgAAAAAAgKKhMAIAAAAAABQNhREAAAAAAKBo1Mnk6wAAAEBxMgE6AFBojBgBAAAAAACKhsIIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFA2FEQAAAAAAoGg0yHcAAAAAoDh0HTk+3xEAAIwYAQAAAAAAiofCCAAAAAAAUDQURgAAAAAAgKKhMAIAAAAAABQNk6/DJm7NyQvfGzswj0kAAAAAAAqfESMAAAAAAEDRUBgBAAAAAACKhsIIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFA2FEdiMdB05PrqOHJ/vGAAAAAAABUthBAAAAAAAKBoKIwAAAAAAQNFQGAEAAAAAAIqGwggAAAAAAFA0GuQ7AAAAAMDG6Dpy/Eat+97YgbmIAwBsIowYAQAAAAAAiobCCAAAAAAAUDQURgAAAAAAgKKhMAIAAAAAABQNhREAAAAAAKBoKIwAAAAAAABFQ2EEAAAAAAAoGgojAAAAAABA0VAYAQAAAAAAiobCCAAAAAAAUDQURgAAAAAAgKKhMAIAAAAAABQNhREAAAAAAKBoKIwAAAAAAABFQ2EEAAAAAAAoGg3yHQDIvq4jx2d+f2/swDwmAQAAAAAoLEaMAAAAAAAARSPrhZFbb701dt1112jVqlW0atUqysrK4rHHHsvcvnz58hg2bFi0a9cuWrRoEUOGDIm5c+dmOwYAAAAAAMBasl4Y2WabbWLs2LExZcqUePHFF6NPnz5x+OGHx/Tp0yMi4rzzzotHHnkkHnzwwXjmmWdi9uzZceSRR2Y7BgAAAAAAwFqyPsfIoEGDqv3/yiuvjFtvvTUmTZoU22yzTdx+++1xzz33RJ8+fSIi4ne/+13suOOOMWnSpNhvv/2yHQcAAAAAACAjp3OMVFRUxH333RdLly6NsrKymDJlSqxcuTL69euXWadnz57RpUuXmDhxYq3bKS8vj8WLF1f7AQAAAAAA2FBZHzESEfHaa69FWVlZLF++PFq0aBF//vOfY6eddoqpU6dGo0aNok2bNtXW79ChQ8yZM6fW7V199dUxZsyYXEQFAAAANiNdR47PdwQAoMDlZMTIDjvsEFOnTo3nn38+fvjDH8bJJ58cr7/++kZvb9SoUbFo0aLMz6xZs7KYFgAAAAAAKBY5GTHSqFGj6N69e0RE7LnnnjF58uS48cYb45hjjokVK1bEwoULq40amTt3bpSWlta6vcaNG0fjxo1zERUAAAAAACgiOZ1jpEplZWWUl5fHnnvuGQ0bNownn3wyc9sbb7wRH3zwQZSVldVFFAAAAAAAoIhlfcTIqFGj4tBDD40uXbrEZ599Fvfcc088/fTT8fjjj0fr1q3jtNNOi+HDh0fbtm2jVatWcfbZZ0dZWVnst99+2Y4CAAAAAABQTdYLI/PmzYuTTjopPv7442jdunXsuuuu8fjjj8fBBx8cERE///nPo169ejFkyJAoLy+P/v37xy233JLtGAAAAAAAAGvJemHk9ttvX+ftTZo0iXHjxsW4ceOyfdcAAAAAAADrVCdzjAAAAAAAABQChREAAAAAAKBoKIwAAAAAAABFQ2EEAAAAAAAoGgojAAAAAABA0VAYAQAAAAAAiobCCAAAAAAAUDQURgAAAAAAgKKhMAIAAAAAABQNhREAAAAAAKBoKIwAAAAAAABFQ2EEAAAAAAAoGgojAAAAAABA0VAYAQAAAAAAiobCCAAAAAAAUDQa5DsAAAAAsOnrOnJ8viOstzWzvjd24AbfDgBs2owYAQAAAAAAiobCCAAAAAAAUDQURgAAAAAAgKKhMAIAAAAAABQNk68DAAAAG21TmnQdACDCiBEAAAAAAKCIKIwAAAAAAABFQ2EEAAAAAAAoGgojAAAAAABA0VAYAQAAAAAAiobCCAAAAAAAUDQURgAAAAAAgKKhMAIAAAAAABQNhREAAAAAAKBoKIwAAAAAAABFQ2EEAAAAAAAoGgojAAAAAABA0VAYAQAAAAAAiobCCAAAAAAAUDQURgAAAAAAgKLRIN8BoJh1HTk+8/t7YwfmMQkAAMD6W/OzzKZuc3osAMD6MWIEAAAAAAAoGgojAAAAAABA0VAYAQAAAAAAiobCCAAAAAAAUDQURgAAAAAAgKLRIN8BAADWR9eR4zO/vzd2YB6TAAAAAJuyrI8Yufrqq2PvvfeOli1bRvv27WPw4MHxxhtvVFtn+fLlMWzYsGjXrl20aNEihgwZEnPnzs12FAAAAAAAgGqyXhh55plnYtiwYTFp0qR44oknYuXKlXHIIYfE0qVLM+ucd9558cgjj8SDDz4YzzzzTMyePTuOPPLIbEcBAAAAAACoJuuX0powYUK1/99xxx3Rvn37mDJlShx44IGxaNGiuP322+Oee+6JPn36RETE7373u9hxxx1j0qRJsd9++2U7EgAAAAAAQETUweTrixYtioiItm3bRkTElClTYuXKldGvX7/MOj179owuXbrExIkTa9xGeXl5LF68uNoPAAAAAADAhsrp5OuVlZVx7rnnxje+8Y34+te/HhERc+bMiUaNGkWbNm2qrduhQ4eYM2dOjdu5+uqrY8yYMbmMCgAAAERE15HjM7+/N3ZgjcsBADZlOR0xMmzYsJg2bVrcd999X2k7o0aNikWLFmV+Zs2alaWEAAAAAABAMcnZiJGzzjorHn300Xj22Wdjm222ySwvLS2NFStWxMKFC6uNGpk7d26UlpbWuK3GjRtH48aNcxUVAAAAAAAoElkfMZJSirPOOiv+/Oc/x9///vfo1q1btdv33HPPaNiwYTz55JOZZW+88UZ88MEHUVZWlu04AAAAAAAAGVkfMTJs2LC455574i9/+Uu0bNkyM29I69ato2nTptG6des47bTTYvjw4dG2bdto1apVnH322VFWVhb77bdftuMAAAAAAABkZL0wcuutt0ZERO/evast/93vfhff//73IyLi5z//edSrVy+GDBkS5eXl0b9//7jllluyHQUAAAAAAKCarBdGUkpfuk6TJk1i3LhxMW7cuGzfPWyyuo4cn+8IAAAAAACbvazPMQIAAAAAAFCoFEYAAAAAAICioTACAAAAAAAUDYURAAAAAACgaGR98nWgsKw5qft7YwfmMQmwOas61qx5nHH8YV30DwA2FV6zAGDzY8QIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEWjQb4DAABAtnQdOT7z+3tjB+YxCQAAAIXKiBEAAAAAAKBoKIwAAAAAAABFQ2EEAAAAAAAoGgojAAAAAABA0TD5OgCQUTVx9eY0afXGTsad7Um862JScBOPszH0GwAAoNgYMQIAAAAAABQNhREAAAAAAKBoKIwAAAAAAABFQ2EEAAAAAAAoGgojAAAAAABA0WiQ7wAAUBe6jhyf+f29sQO/dPnmYs3HV5uNfdw1bbu2+9uQ9l+fzNmwue97ACD7vH8AgM2DESMAAAAAAEDRUBgBAAAAAACKhsIIAAAAAABQNBRGAAAAAACAomHydahjdTWpMNTW13I5SWTVfZqIsnZfdgwolLYr9IlFCzFfXff/DWmDQmyvQqa9gGJU23sUn18AgM2RESMAAAAAAEDRUBgBAAAAAACKhsIIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFI0G+Q4A1J2uI8dnfn9v7MA8JoHsq+rfm3rfXp/n6Zets+bt2ZaNbecy31dVyNk21Po8Fq8LFBt9HlbzXMgO7QgAmy4jRgAAAAAAgKKhMAIAAAAAABQNhREAAAAAAKBoKIwAAAAAAABFw+TrwGbJRIgUo42dOHxzmnB8YxVKG9SUwzGs8I/pVfnWzJbLzHXdHnV1fzW1I9UV+nMBAAA2FUaMAAAAAAAARUNhBAAAAAAAKBoKIwAAAAAAQNFQGAEAAAAAAIqGydeBgpPtiUXzOVGpSVLXT03tVNtk2NnuE3UhG/dXKJOD51I2Jo//sv6zsWp7Ltd0P5vTMaw2hZ4pn9ugZhvSZ9bn+bax28hmTthcOPZlR1U7OnYAwKbBiBEAAAAAAKBoZL0w8uyzz8agQYOiU6dOUVJSEg899FC121NKcemll0bHjh2jadOm0a9fv3jrrbeyHQMAAAAAAGAtWS+MLF26NHbbbbcYN25cjbdfe+21cdNNN8Vtt90Wzz//fDRv3jz69+8fy5cvz3YUAAAAAACAarI+x8ihhx4ahx56aI23pZTihhtuiEsuuSQOP/zwiIi46667okOHDvHQQw/Fsccem+04AAAAAAAAGXU6x8jMmTNjzpw50a9fv8yy1q1bx7777hsTJ06s9e/Ky8tj8eLF1X4AAAAAAAA2VNZHjKzLnDlzIiKiQ4cO1ZZ36NAhc1tNrr766hgzZkxOs0G2dB05PiIi3hs7MM9JNk4h56/KFlGY+YrVmvtlQ9bd2H2oH/BVbEh/ZcPbq6b1N+R5uqHP781xf2ajDRwbgSqb43ESACAb6nTEyMYaNWpULFq0KPMza9asfEcCAAAAAAA2QXVaGCktLY2IiLlz51ZbPnfu3MxtNWncuHG0atWq2g8AAAAAAMCGqtPCSLdu3aK0tDSefPLJzLLFixfH888/H2VlZXUZBQAAAAAAKEJZn2NkyZIl8fbbb2f+P3PmzJg6dWq0bds2unTpEueee25cccUV0aNHj+jWrVuMHj06OnXqFIMHD852FAAAAAAAgGqyXhh58cUX46CDDsr8f/jw4RERcfLJJ8cdd9wRI0aMiKVLl8bQoUNj4cKF8c1vfjMmTJgQTZo0yXYU2GCFPPF4Xcv2BNd1NWF2PieY/LL+s7FtUNtj2lT6aTYmb65rX6XNCyF/tm1Kj6nQstaWp66OiV9233V9f/k8btWWI5/tURd/V9s2CuW1PRvtkc/9CbC+CuX1EABYLeuFkd69e0dKqdbbS0pK4vLLL4/LL78823cNAAAAAACwTnU6xwgAAAAAAEA+KYwAAAAAAABFQ2EEAAAAAAAoGgojAAAAAABA0cj65OvApqfryPEbdft7YwfWuE7V8i/bbm1/VyjWJ9v6PMZs3E82ZeP+NrbP1LVs56jrx1Uo7Uhx2Zz63eb0WLItV21TyK/rG2p92qi290I13Q51xbEPAODLGTECAAAAAAAUDYURAAAAAACgaCiMAAAAAAAARUNhBAAAAAAAKBomX6fomZwQVqt6LmxKE8XW9Pz1nCbX8tnHartv/b5ubGw7b0r758teC7LRB3O17lfZRl3vo9rur6rdN6dJ7KHYbOjxZFN8Dw4AmwMjRgAAAAAAgKKhMAIAAAAAABQNhREAAAAAAKBoKIwAAAAAAABFQ2EEAAAAAAAoGg3yHQAKXdeR4zO/vzd2YM7/rq6smW9TvO9stO+GbCPb+zOX7Z/NbRd6Pya/z2WyY1Pfh9k+ptfF/RWTTf31Ppf3Uxd9d0NfR79qJq/bAACwfowYAQAAAAAAiobCCAAAAAAAUDQURgAAAAAAgKKhMAIAAAAAABQNk69DDWqb+LK2CS03ZOLNzcn6tNPmqFAmTs9Vjs19/61LMT92KDSb4rF2czqGbE6PZVOXjcnla3vfaoL2TZN9CADw1RkxAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEVDYQQAAAAAACgaCiMAAAAAAEDRaJDvAADr0nXk+KyssyHbeG/swK+8Pb5cNvYbAGtzfC0O2X7vUrW9fL4P2tDHtCHrF/p7vUJofwpHofdXANgcGDECAAAAAAAUDYURAAAAAACgaCiMAAAAAAAARUNhBAAAAAAAKBomX4eNZGLTTVNdTOa+KfWNDcm6KT0uYMPVxXPccYRilsv+/2Xb3tjX+zUnfV6f5et7+xfXyYbNcfJyE3ADAOSOESMAAAAAAEDRUBgBAAAAAACKhsIIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFI0G+Q4AUKXryPH5jgAABcPrIrn2ZX2sEPtgNjLVto33xg7M2nY3dlu1ZSvEfUF2bei+/7I+lo3+CACbMyNGAAAAAACAoqEwAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEXD5OsUJZMXAgDAxsnGpO1fNjF0Pt6v13SftU1avSETW+dyEmyfazZN+dxvxTQpezE91g21scewNW1sm9Z231XLc3mc/LJjejbuW78rfPYRVfI6YmTcuHHRtWvXaNKkSey7777xwgsv5DMOAAAAAACwmctbYeT++++P4cOHx2WXXRYvvfRS7LbbbtG/f/+YN29eviIBAAAAAACbubwVRv77v/87zjjjjDjllFNip512ittuuy2aNWsWv/3tb/MVCQAAAAAA2MzlZY6RFStWxJQpU2LUqFGZZfXq1Yt+/frFxIkT11q/vLw8ysvLM/9ftGhRREQsXrw492HZLFWWL8t3BAAAIP7zuS4b79Fr+4y4sdten+3VlH/Nv6tteTbyUby+7HzIV+mPm4tieqwbakPaprbj08a26Zf1zWzvqw05BmfjvvW7wmcfbd6q9mlK6UvXLUnrs1aWzZ49O7beeuv45z//GWVlZZnlI0aMiGeeeSaef/75auv/9Kc/jTFjxtR1TAAAAAAAYBMya9as2Gabbda5Tl5GjGyoUaNGxfDhwzP/r6ysjAULFkS7du2ipKQkj8kK0+LFi6Nz584xa9asaNWqlSwFmkeWws9SaHlk2TTyyLJp5JGl8LMUWh5ZNo08smwaeWQp/CyFlkeWTSOPLIWfpdDyyLJp5JFl08nD6pEin332WXTq1OlL181LYWTLLbeM+vXrx9y5c6stnzt3bpSWlq61fuPGjaNx48bVlrVp0yaXETcLrVq1KpgnZSFliSisPLLUrJCyRBRWHllqV0h5ZKldIeWRpWaFlCWisPLIUrtCyiNL7Qopjyw1K6QsEYWVR5baFVIeWWpWSFkiCiuPLLUrpDyy1K7Q8hS71q1br9d6eZl8vVGjRrHnnnvGk08+mVlWWVkZTz75ZLVLawEAAAAAAGRT3i6lNXz48Dj55JNjr732in322SduuOGGWLp0aZxyyin5igQAAAAAAGzm8lYYOeaYY+KTTz6JSy+9NObMmRO77757TJgwITp06JCvSJuNxo0bx2WXXbbW5ceKPUtEYeWRpfCzRBRWHllqV0h5ZKldIeWRpfCzRBRWHllqV0h5ZKldIeWRpfCzRBRWHllqV0h5ZCn8LBGFlUeW2hVSHllqV2h52DAlKaWU7xAAAAAAAAB1IS9zjAAAAAAAAOSDwggAAAAAAFA0FEYAAAAAAICioTACAAAAAAAUDYURAAAAAACgaCiMAAAAAAAARUNhZDOUUsp3hE1KIbVXIWWhZoW2jwotDzUrpP1USFnWVEi5CiFLIWSoUkhZ1lRouQopjyxfrpByyVK7QsojS+0KKY8stSukPLLUrJCyRBRWHllqV0h5ZKldoeVhtZJkz2wWli5dGpWVlZFSilatWuU7Tq1SSlFSUpLvGBERUVFREfXr149Vq1ZFgwYNorKyMurVy0+tsJCyzJ49O1566aVYsWJFdO3aNfbYY4+85Ci0LFV9t+rffO6jQstTSPupkLJEFNZ+KqQss2bNiqeeeiqWLl0a2223XfTv3z8vOQotS0Rh7adCylJo+6mQ8siyfpYvXx4rVqyIxo0bR+PGjSMif+9LCynLkiVL4vPPP4+UUrRv3z6vWQotTyHtp0LKUmh5ZNk08shSs0I65hVankLaT4WUJaKw9pMsm04eapHY5E2fPj0dcsghqVevXqlTp07p97//fUoppcrKyrzmev/999Nvf/vb9LOf/Sw98cQTec3yRW+88UY655xz0pAhQ9LQoUPT+++/n1JKqaKioqizvPrqq2m77bZL++yzT9pyyy3TXnvtlR588ME6z1FoWd5666102WWXpe9///vpmmuuSXPmzEkp5e85Vkh5Cmk/FVKWlAprPxVSlldffTV16dIlHXDAAal79+5p6623Trfcckud5yi0LCkV1n4qpCyFtp8KKY8s62f69OnpiCOOSDvvvHM67LDD0q233ipLSmnatGnpkEMOST169Ej77LNPGjVqVN6yFFqeQtpPhZSl0PLIsmnkkaVmhXTMK7Q8hbSfCilLSoW1n2TZdPJQO5fS2sS9/vrrceCBB8bOO+8c559/fhx77LFxyimnxNSpU/NahXzttdfiwAMPjNtvvz1uv/32OOyww+Kuu+7KW541TZs2Lfbff//47LPPomHDhvHWW2/FUUcdFQsWLKjzb8IWUpZ33nknDjvssDjqqKPib3/7W0yYMCF23nnneOyxx6KioqJOh/0VUpbXXnstysrK4q233op33303Hn744TjnnHNi6dKleXmOFVKeQtpPhZQlorD2UyFlmTlzZgwaNCiOPfbYeOKJJ+KJJ56IU045JR566KH497//Xaf7qZCyRBTWfiqkLIW2nwopjyzrp+q9cseOHeNHP/pRtG7dOu6+++546aWXijrLjBkzMp8hrrjiijj44IPjf//3f+Phhx+u8yyFlqeQ9lMhZSm0PLJsGnlkqVkhHfMKLU8h7adCyhJRWPtJlk0nD18iXxUZvrr58+enQw45JJ1zzjnVlvfu3TudffbZKaX8fLPz3XffTdtuu2268MIL0/Lly9Mnn3ySxowZk3r16pU+/vjjvI5k+eijj9Luu++eRowYkVn29NNPp69//evp2WefLdos5eXlafjw4enoo49O5eXlmeW33357ateuXfr000+LMsusWbPSzjvvnEaOHJlZdscdd6Svf/3r6Z133qmzHIWYp5D2UyFlSamw9lMhZVm5cmW69NJL0+GHH56WLl2aWT5+/PjUpk2bNGvWrKLMklJh7adCylJo+6mQ8siyfj799NP0rW99K/34xz/OLJs/f37adttt07XXXlu0WRYsWJD69+9f7TPE4sWL0z777JOGDx9ep1kKLU8h7adCylJoeWTZNPLIUrNCOuYVWp5C2k+FlCWlwtpPsmw6efhyRoxswlauXBkLFy6Mo446KiIiKisrIyKiW7dusWDBgoiIOv9m58qVK+N3v/td7L777nHZZZdF48aNY8stt4yysrL4+OOP8349vZdeeinatGkTp512Wubbi9/61reisrIypk+fXrRZKisrY5tttomDDz44GjVqlMmz//77R4sWLWLlypV1lmXVqlUFk+XZZ5+Nzp07x5lnnpl5fh1zzDGxcOHCeO211+osR8Tqa1EWUp6N6TMpR98Y3pg+k6ssEYXTbwqtz9SrVy922GGH6NOnTzRr1iyzfJ999omWLVvGZ599ttbf5Go/pZQKJkuEPlObQuozVdsulDyF1DaF1C5f9P7770eHDh1iyJAhEbH69aJt27Zx2GGHxfz58yPiP++fc52rkLIsWLAgttpqq8wcMBUVFdGyZcsYNGhQzJ07N7OsLrIUWp5C2k+FlKXQ8siyaeSRpWaFdMwrtDyFtJ8KKUtEYe0nWTadPHy5BvkOwMbr0KFD/P73v48ePXpExOonV7169WLrrbeO999/v9q6S5YsiRYtWuQ0T0VFRTRs2DB22WWXaNKkSTRt2jRz2z777BMNGzaMTz/9NDp27JjTHOuy3Xbbxamnnhrbb799RERmsvOWLVvWePI0lxPNfu1rX4vTTjutILI0adIkBg8eHN26dau2vE2bNtGwYcNqeV5++eXo1atX1jMsXLgw2rRpE82aNYshQ4ZEly5d8palSmlpaRx11FGx7bbbRsTqPl5SUhKNGzeO5cuXr7V+LvdRSUlJdOzYMb773e8WRJ6N6TPZLop+lT6TywJtofSbQusz9erVi/79+0e7du0i4j8TzzVv3jwaNGgQK1asyKw7ceLEKCsry/p++uSTT2KrrbaKhg0bxqGHHhpbbLFF3rKsSZ+pWSH0mYjC7DeF0DaF2C5ftPXWW8cRRxwRBxxwQERE1K9fP5Nx3rx5ERHV+m8uclW1xzbbbJP3LFXatm0bJ554YhxyyCHV7reysjL+/e9/11mWquPHlltuWRB5IvSZddE2NSuEdqm6P22ztkJsF8fg2ukztSuEflOIfaYQ2qXq/gqtbVg/Roxs4qqKIpWVldGwYcOIqH6gjoi4+uqr41e/+lWsWrUqZzmmTp0agwcPjs8//zwGDRoUF110USZLRESDBqtrcGueoHz++edzlqc2O+64Y5x44okRsbrNqnK1adOm2gf36667Lt5///2sn+x5++23Y/LkyZksJ5xwQt6yfPzxx/HCCy/EhAkTorKyMnOCu+okWETEokWLMgfviIhLL700+vbtm/mGRLZMnTo1Bg0aFFOnTo2IyJzgXnOEUV1lWVPv3r3jtNNOi4jV+6h+/frRuHHj2GqrrapV9n/961/H7Nmzc3Jy8IMPPogZM2Zk8px66ql5y/NV+0w2vw3xVftMLr+Zke9+U0h9ZtasWfG3v/0t/ud//if+/e9/R8uWLSPiP32msrIyFi1aFEuXLs0cAy+55JL4xje+EfPmzct6n9l///3j//7v/yIiMidxI6LOs3yRPvMfhdRnIgqr3xRS2xRSu3xReXl55t8OHTrEscceGxHVX6vWXC8i4pprrokrrrgi61neeOONuOuuu2LFihXRvn37TJYvjqCuiyyff/55VFZWxvLly2OLLbbIfGD/YrtUfV4oKSmJ0aNHx7Bhw7KeJWL1dduvvPLKWL58ebRu3TqT54ttUxd59JnaaZuaFVK7RGib2hRSuzgG106fqV0h9ZtC6jOF1C4RhdU2bDiFkc1EvXr1qn3IrDpRcemll8bFF18cffv2zXwwzbZXXnkl9t9//9hpp52iadOm0aRJk4j4z0Fp5cqVsWTJkqioqMhcYuGiiy6KsrKy+OSTT3KSqcqbb74ZF154YZxyyilxww03xNtvv13jehUVFZnhbJdeemlceOGFsWjRoqxmmTp1auy5556ZE7lVUkrVTizVRZZXX301ysrK4sQTT4xjjz02dt5557j33ntjwYIFUb9+/UxfKikpiXr16kWLFi3iiiuuiOuvvz6eeOKJzDdUs+GVV16JffbZJ8rKymL33Xevdtuafbousrz99tsxduzYGDVqVNxzzz2xbNmyavdfpaKiIvOiNnr06PjBD34QixcvzlqOKi+//HLstddemUurVWWoqc/kOk82+ky2vg2RjT6TzW9mFFK/KbQ+s88++8T5558fZ511Vuy+++5x3XXXxYcffrhWnykpKYkWLVrEVVddFTfeeGO88MIL0b59+6z2mf322y+OPPLIzLe+qqw5BL4uskToM7UppD4TUVj9ppDappDa5YumT58exx13XBx88MFx+OGHx7PPPps5eVG/fv1Mvi233DJTWLrooovi0ksvjUGDBmU1yyuvvBI77rhjLFq0KBo1ahQR/2mfNR9/XWSZNm1aDBo0KL7xjW/EXnvtFb///e/jo48+ioio1n/atm0bjRs3zmS5/vrr45RTTslqlojVbbPLLrtEo0aNMp8bKisr1zqBUBd59JnaaZuaFVK7RGib2hRSuzgG106fqV0h9ZtC6jOF1C4RhdU2bKS1Zh1hk1VRUZFSSumyyy5LQ4cOTdddd11q3LhxmjJlSs7u85VXXknNmzdPF1xwQbXla06AXFlZmT755JPUqVOn9O6776bLL788tWjRIr3wwgs5y5VSStOnT0+tW7dOAwYMSEOGDEmtW7dO/fr1S7/+9a/XyllWVpZuu+22dOONN+akzaZOnZqaNWu2zsmWVqxYUSdZ5s2bl3r27Jkuuuii9M4776SPPvooHXPMMWnHHXdMl112WZo3b15m3blz56ZevXqlY445JjVq1Ci9+OKLWc0ybdq01LRp03TppZemlFb3lfnz56d33313rXXrIkubNm3St771rXTggQemBg0apCFDhqQJEyZk1lm5cmUqLy9P22+/ffrDH/6Qfvazn+XsOTZ16tTUvHnzdN5559W6zqpVq+okjz6z7jyF0m8Kqc8sWLAg7bHHHmnEiBFp7ty5qaKiIv3kJz9J++67bzrppJPSe++9l1n3888/T7vttlvq379/atSoUZo8eXJWs0yfPj01adIk/fSnP00pre4zH374YZo6depa6+Y6S0r6TG0Kqc+kVFj9ppDappDa5YvefPPN1KpVqzR06NB0wQUXpKOOOiqVlJSkyy67LL3//vvV1r3gggvSWWedlS6//PLUpEmTrL8+1Pb+uLKyMqW0+nlVV1neeeedtMUWW6Rhw4alX/ziF+nss89OW2yxRRo6dOha9/Wzn/0sffe7301jxoxJjRs3zsnr5pe1TV3m0Wdqp21qVkjtkpK2qU0htYtjcO30mdoVUr8ppD5TSO2SUmG1DRtPYWQzdMUVV6SSkpLUunXrnH4I/fjjj1NpaWnq379/Smn1i8W5556bBg4cmHr27Jl+/vOfp3/9618ppZSWL1+evv71r6d+/frl7ATlmsrLy9MJJ5yQzjjjjMyyt956Kx1zzDFpv/32SzfeeGO19b/zne+kNm3apObNm2e9YPPmm2+mxo0bp4svvjiltLoA8vDDD6df/epX6S9/+UtasmRJnWVJafVJja5du661Dy688MK0yy67pGuvvTYtXbo0pZTS66+/nkpKSlLTpk3Tyy+/nNUcn376aerevXvq1atXZtkpp5yS9txzz9SxY8d04IEHppdffjnzopLLLMuWLUvf/va307BhwzLLpkyZkvbaa6/Ur1+/9Kc//ana+gcddFDq3r17atasWU6eYzNmzEjNmjVLF110UUpp9UnSp59+Ov35z39Ozz777Frr5zqPPlOzQuo3hdZn3n///bTtttum//3f/622/Be/+EUqKytLP/rRj9Inn3ySUkpp1qxZqaSkJDVq1Ci98sorWc2xcOHCtP/++6fOnTtnlh177LFpl112Sc2bN0877bRT+uMf/5jpv7nMkpI+sy6F0mdSKrx+UyhtU2jt8kWXXHJJOuSQQ6otu+mmm1K7du3ShRdemObMmZNZft5556WSkpLUvHnzrL8nfeONN1LLli3T0KFDU0qrv7h02223pQsuuCBdcMEF6a233qq2fi6zpJTS9ddfnw488MBqy+6+++606667ppNOOim99tprmeVXXnllKikpSS1btsxJlnfffTdtscUW6Xvf+15KaXXbjB07Np1++unp6KOPTs8++2zmi151kUefqZ22qVmhtEtK2qY2hdYujsG102dqVyj9ptD6TKG0S0qF1zZsPJfS2gz1798/IiL++c9/xl577ZXT+yorK4v58+fHX/7yl/j2t78dr732WvTs2TP69u0bN910U1x33XXx3nvvxSeffBLTp0+P//u//4vJkyfHnnvumdNcjRo1irlz51a7JEj37t3j2muvjZ49e8Yf/vCHeOSRRzLrN23aNJYvXx6TJk2KvffeO2s5Vq1aFTfffHO0aNEic8mfwYMHxyWXXBJXXXVVHHHEEXHKKafEyy+/nPMsVVauXBmrVq3KXLrl888/j4iIsWPHxkEHHRS33npr5pJjW2yxRfzoRz+Kl156aa1LFn1V7dq1iwEDBkTz5s3jpz/9aeyzzz7x8ccfxw9+8IO45ZZbYuXKlTF48OB45513cp6ladOmsWDBgthyyy0jYvXQxz322CP+53/+J1atWhW/+tWv4pVXXsncVllZGR9//HFMmjQp68+xlStXxkUXXRTNmzeP73znOxERceSRR8aPf/zjOPPMM6Nv375x1llnZeYRynWeiNXXUC2UPnPIIYcURJ+JKIx+k1KKFStWFFyfqVevXjRr1ixmz54dEf+5nupZZ50VRx55ZDz11FPx3HPPRcTqYcVXXXVVvPLKK7HrrrtmNUfr1q1j8ODB0aNHjzj55JNjr732is8++yxGjx4dzz33XOywww4xfPjw+Oc//5nzLBGr+8z8+fPzfqypqKiIiy66KJo1a6bP1KDQ+k1JSUk0bdo0723TunXrOPzww6N79+4F0S5fVPXaFPGfNjr77LPjyiuvjJtvvjn+/Oc/Z27v2rVrbLfddvH8889n/T3pCy+8EEuWLImePXvGe++9F3369Im77747nn322Xj66afj61//eowfP75OslRZvHhxLFmyJHNJkO9973sxevTomDhxYtx3332ZS7jutNNOscsuu8TEiRNzkmX69OnRvHnz2GqrrWLKlCnRr1+/ePzxx+Pjjz+OxYsXx7e+9a249dZbM+vnOo8+UzttU7NCaZcIbVObQmuXCMfg2hRKn5k0aVLB9ZmIwug3hdZnIgqjXSIKs23YSPmuzJAbXxyFkCuzZ89OJ510UmratGk6+OCD06effpq57e67705t2rRJjz76aEoppRtuuCFNnz4955lWrVqVVqxYkU455ZR01FFHpeXLl6fKyspMtfadd95JZWVl6Zhjjsn8zf/93/+tNVwzW9588800dOjQtN9++6XOnTunww47LM2YMSMtW7Ysvfjii2nrrbdOJ510Umb9f/zjHznLUmXvvfdOBx10UOb/y5cvz/y+1157pWOPPTbz/88//zzr979m5Xz48OGpQ4cOaeDAgdW+FZJSSjvvvHM6+eSTc5olpZQ+++yzdNBBB6UzzzwzpbS6D61cuTKltHq0xDbbbJN+/OMfp5RWD4u87777arx0U7ZMmTIl9e/fPx1yyCGpZ8+eacCAAemll15K77//fho/fnxq1KhRGjVqVE7zzJ49u9rzda+99spbn5k9e3a1bxufd955ee0zVf138eLF6aCDDko//OEPU0r56TdVw7pffPHF1L9//9S/f/+89ZmlS5dWu4zid77zndSrV6+0cOHClFLKtE1KKR166KGpd+/emf9XXUowm1mWLVuW+f9NN92Udtppp3TIIYekjz76qNq6BxxwQLVvq2U7S0qrvzk/efLktGrVqrz3mVmzZqWZM2em119/Pe995ou+/e1v563P1OSGG27IW7+pqKio9lr53e9+N+2yyy55aZuKiopq2/zlL3+Ztt9++7w9n2pz4403ppYtW2YyrXk8GjNmTGrRokXm/dWHH36YZs2albMsN9xwQ+rUqVPq0qVL+s53vpNmzZqVli9fnj7//PN05plnpjZt2qQPP/ywTrLcf//9qWnTpumll15KKVVvl1tvvTU1atQoTZs2LaW0emTm3Llzc5YlpZTuueeezEjPqtfxqn7yX//1X6lJkyZpxowZdZLnpptuKpg+c+ONNxZMn6nKUyhtU0jPp0LqMykVVr8ppLYppHZxDK5uzfNU+e4zn332Web3QuozKaV07733Fky/+f3vf18wr9v33XdfwbRLSvl/PpEdCiN8ZR999FEaNWpUevLJJ1NK1a+n171798z19ta8LmMufHH7Tz/9dKpfv361y2ZVrfP000+nevXqVRtql8ssb7/9djrxxBPTwIEDM5cXq/Lwww+nkpKStZZny5IlS9LixYvTokWLMsteeuml1L59+3TcccdlllWdZBk+fHgaNGhQnWVJafWQyD/+8Y9rXcNzyJAh6aijjspJlvnz56cZM2akN954I6WU0iOPPJJKSkrSH//4x5RS9RNB99xzT9piiy3SzJkzc5KlKs/rr7+e6QczZsxI3/jGN9LBBx+81v3efPPNacstt8xZAe3DDz9M7dq1S0cccUSaOHFiSimll19+OW255ZZ13mdqypJSStdee22d95mUVrfDt7/97cyb+gcffDBv/ebll19OAwcOzLypnzp1at76zGuvvZYGDhyYnnnmmUzbfPLJJ6lbt27p4IMPrvamNaXVJzkOOOCAaid3c5Gl6pI+KaV05513pocffjhzsrnqvs8555zUt2/frOeoMm3atNS5c+fMPB733ntv3vrMtGnT0jbbbJPOPffclFJKkydPzlufmTVrVrr//vvTH//4x8yHm3z1mdrypJSffjN9+vR04oknpoMOOiidcsop6a9//WuaN29e2m233dJBBx1Up22zZpZTTz01PfTQQymllP785z+nP/7xj3X+fFqX8vLydOCBB6b99tsv80WdquL4xx9/nDp37px53tWFG264Ie27775rXS7h9ddfT+3atUsPP/xwTu9/zffjRxxxROrcuXPmA/maX27o3r17uummm3KaJaXq743vvffe9J3vfKfa63pKqy/XttVWW6Vf/vKXOc+T0urLG/bu3btg+sxNN92Utz5TWVlZbR8tX748b23zxSwp5a9t5s+fX20uvaVLl+a1z3wxT0qrL6uYj7Z56623ql32OZ/Ppy9mSSm/7fKnP/2p2nE2n8fgqjxrfmEoX8fgf/3rX+mEE07IvLdcsmRJ3vpMVZY152nLV59JafWxZcGCBdX20+GHH56XflOVZc0i1t13310Qr9sprf7yXb7f06zp97//fcG0DRtHYYSsWLRo0VoTrn/66aeprKws/c///E/O7/+NN95I119/fZo9e3a15ddff32qV69etQnXU1r9jfwdd9wxJyefasvy/vvvp8ceeyxzAqzqA+sf/vCH1LNnz/Tvf/8761mmT5+eDjnkkNSrV6/UqVOn9Pvf/z6ltPoNx7333pu23HLLdNRRR6UVK1ZkTm6ccMIJ6dhjj00rV66scdKobGZZ80PPF0/0VFZWpqOOOqraJNvZ8tprr6VevXqlXXbZJTVs2DCNGTMmLV++PJ199tmpcePG6ZFHHqm2/l//+te04447VhsRlU1fzFM1qe2//vWv9Ic//GGtPnPzzTenXXbZJWcjaJ566qnUoEGD1KdPn3TSSSdlThLed999aYsttkiDBw+ukz5TU5ZJkyZlblvzjWNKue0zKa0uPDRt2jRdeOGFmWUrV65MZ511VmrcuPFab5Zz2W++mGXNeVX+8Ic/ZJ5PddFnqiYT/8EPfpA++OCDardNnDgxderUKX3rW99Kb775Zub+TzvttHTYYYet9bzPZZaUqr9xrnL88cens88+O1VWVuakzzRr1ix169YtdejQIX388ccppZQ51lSNqKyS6z6zZpaq16iq40zVie266DOvvvpq2nbbbdNee+2VOnTokAYNGpQpUk+cODFts802ddZnasuz5pcVarrPXPWbGTNmpC222CKddtpp6Wc/+1nq379/2m677dKPf/zj9Nxzz6Wdd945feMb36iTtqkpS7du3dJPfvKTWv8ml8+nNb3xxhtpxIgR6fvf/3664YYb0ptvvplSSunJJ59M++yzT+rbt2+aP39+Zv0FCxaknj17rvX6nossr7/+eua2KVOmZF6rqtrjlVdeSTvuuGNO5uqZO3dutfeTVa/T06ZNS9/4xjdSt27dqn3LdenSpalXr145e69eW56UVr9eVfXhqrZ5++2306677pr5slU2vfvuu+m///u/0/Dhw9N9992Xud9HHnkklZWV1WmfqSlLlalTp9Zpn0lpdR/+8Y9/nAYOHJjGjBmTeQ169NFH67xtvphlzW/X1nXbvPPOO2m77bZLo0ePrjY67tFHH037779/nbbLuvKkVPdt8/LLL6dWrVqlX/3qV9WW56PPfDHLmseZum6XV155JW211VbpjDPOSB999FHmPqdNm5bKysrq/BhcW56UVn82r8tjcNVnl5KSkvS73/0uc7/jx4+v8z5TU5Y1b6vrY/C0adPSt7/97bTjjjumwYMHZz5T5uO1+4tZ/vKXv2Ruq+vX7X/9619p5MiR6YQTTkjXXXddmjJlSuY+99133zp/Pn0xz5oFtFdffbVO24bsUhghZy699NLUo0ePalX4XHjrrbdS27ZtU0lJSRo1alRmAtKUVh8cx4wZk0pKStIll1ySXnrppTR//vw0cuTI1L1797W+cZPLLCnVfKL2/PPPT/37919rFMVXNX369NSuXbt03nnnpbvvvjsNHz48NWzYMHOSe+nSpenhhx9O22yzTerZs2caPHhwOvroo1Pz5s2zPpKmtiy1TYi9cuXKdMkll6SOHTuuNdlZtrKcf/75afr06en6669PJSUl6aOPPkofffRROuOMM1LDhg3Trbfemj7++OP0+eefp5EjR6bddtstLViwIKtZ1pWn6nmz5pv7Kj/+8Y/TkCFDqn0bPpvmz5+fvvOd76Rf/vKXaY899kjf+973MiedHnroobTTTjulHXbYIad9prYsxx9/fHr11VdTStXbJpd9JqXVb4ibN2+eGQFXZdWqVenTTz9Nw4YNq7N+U1uWdZ3AzlWfWbJkSTrkkEMyl4ZKafXJ1JdffjnzRnXatGlpp512Sj169Ej77LNPOvzww1OLFi2yPhnzurLU9Dr0+eefp4svvji1b98+JyP2qj50XXTRRemTTz5JO+20U7riiitSSqtPig0dOjQ1bNgw/fKXv8x5n/lilp133jldfvnlmeJ0Ta9Nueoz7733Xtp6663TyJEj05IlS9Jf//rXVFpamp5//vnMOnXVZ9Y3z5py2W+WL1+ejj/++HTOOedUu7/dd989lZSUpOOOOy69+uqrad99903bbbddTtumtiy9evVKJSUlmYkm17wtl8+nNU2fPj21bt06DRgwIA0ZMiS1bt069enTJ911110ppdUjQPfZZ5/UrVu39Pjjj6e///3v6ZJLLkmlpaVZHwFVU5Z+/fql2267rda/ufDCC9Nee+2V9fegr7/+emrUqFE66qijanxP+cILL6TevXunNm3apF/+8pfp3nvvTSNHjkzt2rVL77zzTlazrCtPTe9rqlx88cVp1113XevLRV/Vq6++mrbZZpvUt2/ftP/++6d69eqlsWPHppRWv44/8MADmZOWue4zNWW59tpr1/k3ueozVXnat2+fjjrqqPSDH/wgNWrUKPMFk1WrVqX7778/cwKqLtrmi1mqvixUm1y2zW233ZZKSkpSr1690pVXXpkpRqxatSrdd999dXacqS1P1ZctapOrtqn6osXw4cPXum3VqlXpwQcfrLM+s64stclVu7z//vupS5cua70/r/Lqq6+mAw44oM6OwV+Wpya5OgZXvQ8dMWJEOv/889MBBxyQeT5VVFTU6TG4piwff/zxOr/MkcvjzPTp09MWW2yRhg0blm677bb0jW98I3OFhsrKyjR58uR04IEH1km/qSnL9773vXW2Ta76zPTp01ObNm3Sd7/73XTmmWemzp07p9133z1TAH3ttdfq9PlUU5499tgj3XzzzbX+Ta7ahuxTGCHr7r333jR06NC0xRZbVLscRS4sWbIknXrqqen73/9+GjduXCopKUkXXHBBtRetioqKdOedd6bS0tK09dZbp549e6ZOnTplKs65zrJmcWTNF5Vp06aliy++OLVq1Spzojdb5s+fnw455JBqJzRSSql3797p7LPPrrZs8eLFacSIEen0009PZ511VtbngVmfLGu2y9/+9rc0aNCgVFpamvX+88knn6QDDzwwcw3/qvvu379/mjRpUnr11VfTCy+8kG655ZbUqFGj1K1bt7TrrrumrbbaKid9ubY8AwYMSM8991zmev9V3n777TR69OjUpk2bzLUzs23VqlVp3rx5afvtt08ffvhh+tOf/pT23nvvdNppp6Vvfetb6eijj06LFy9O559/fs76zJdlOeOMM9L++++fhgwZklJKacKECTnrMymtHspdWlqa+vfvn8l17rnnpkMPPTTttNNO6Re/+EV66qmn0k033ZTzflNbloEDB6aePXumn//859W+rfzOO+/ktM8sX748ffOb30wvvfRSWrVqVerfv3/ae++9U4sWLdK+++6bfvOb32TWvemmm9LIkSPTZZddlpMTp7VladmyZdpvv/2qZXn00UdT375909Zbb52TPvPKK6+kxo0bp4suuiiltPp16Kijjkp77rlnZp3Zs2enq666KjVq1Chtt912OesztWXZe++9M+useaIy133ml7/8Zerdu3e14/5hhx2WfvnLX6Y77rgjPfXUU5nlue4zX5bnzjvvTH//+98zy3Pdb1JKqW/fvpkTgVXFzhEjRqQjjzwy7bnnnmncuHEppdWXe8h129SWZciQIWmPPfZI1113XUoppfHjx6d+/frltF2qlJeXpxNOOCGdccYZmWVvvfVWOuaYY9Lee++duVzB66+/no477ri01VZbpe233z7tvPPOWX/ft64s++23X7VLuaaU0nPPPZfOOeec1KZNmzR16tSsZpkzZ07af//9U58+fdKWW26Zvvvd79ZYHFmwYEEaPnx42nHHHdMOO+yQ9t1335zss/XNU2XChAlp2LBhaYsttqj1SzMb67333kvdu3dPI0aMyBzrbr/99tShQ4fMc6eysjJNnTo1HX/88TntM+vKUvUFlDXlss+ktLpI37Vr18x8Uiml9NOf/jT96Ec/qjbC8vXXX0/HHntsTttmXVlqmqso122T0urXz5NPPjldccUVqVOnTum//uu/qo3ofPPNN9P3vve9nLbLl+Wp6YoDuWybN998MzVu3DhdfPHFKaXV80g9/PDD6Ve/+lX605/+lBl9Om3atJwfg9eV5S9/+Uu1+SNSyn2feeSRR9Jhhx2WyXLxxRenwYMHp1NPPTXdc889KaXV71XPOeecnB+D15Xn9NNPT3feeWe1dXN5DH7xxRdTq1atMu9D77333tS6dev0j3/8I7NOXR2DvyzLFwv3ue4zy5YtS4MHD652LuAvf/lLOuKII9LHH3+cOQ7XRb9ZV5a5c+dWez5VVlbmtM989tlnqX///mnEiBGZZVWX195qq63SNddck1nv3HPPzfnzaV15OnTokPniW5Vctg25oTBC1r3yyitp4MCBOTtxu6Zly5alcePGZYah33///TUWR1JKaebMmemZZ55Jjz32WGbirLrK8sWRIzNnzkwDBgxI2223XU4OlnPmzEn77LNPevbZZ1NK/3mRP+WUU9Lxxx+fUkrVJqSvsq5v8eUyS5XKysr01ltvpQsvvDAzSVU2ffrpp+mqq66q9uHz8ssvTyUlJWnXXXdNXbp0SQMGDMjM9XH//fen++67L2ejntaVZ/fdd0+dO3dO/fv3T//4xz/S22+/nQ4//PDUtWvXnL7AVp0cPP7449OECRNSSqtPem255ZapRYsW1U4up5SbPrM+WVq2bJkZ+vzWW2+lESNG5KTPpLS6GHHEEUekvfbaKz300ENpwIABqW/fvuknP/lJ+tGPfpS+9rWvpdNPPz0tWbIkvfLKKzntN+vKMmzYsNStW7d02mmnpffffz9Nnz49531mzpw5aauttkp/+9vf0nnnnZf69++fXnnllfTYY4+lCy64IJWWlmY+DOba+mR58MEHU0qrR8xdeeWVOTuh/MILL6TRo0enlP7zHPnXv/6VWrduvdY3i3LdZ9aV5ZZbbqm2bl30mdtuuy1tt912mQ8uV1xxRSopKUn9+vVLe+21V2rfvv1al+bIpXXl2XvvvVP79u0zx5pc9pvKysq0dOnSdMABB6QTTzwxc3Lpww8/TNtuu2367W9/m0444YR0wAEHZP2+NzbLQQcdlFLK/fPpiw4++OA0dOjQTNaUVn8z9vvf/376xje+kf76179m1p0xY0b66KOP1nofVhdZDjjggMzlMGbNmpWuuOKKtMcee+Rk5NNjjz2Wvve976XJkyen559/PrVt23adxYgPP/ww/fvf/87JZVw3NM9nn32WbrjhhrTffvtl/YtCFRUVaezYsWnAgAFp4cKFmeVVozZq6rO56jMbmuXDDz/MaZ9ZtWpVuu6669IPf/jDavvl9NNPT2VlZWnvvfdOQ4cOrZPn0/pkOfPMMzPPp9mzZ+e0bapMnTo19ejRI1VWVqYxY8akzp07pxtuuCEdfvjhmdfVlHJ/nPmyPEcccUSmoJTLY83KlSvTOeeck9q1a5d5P3XYYYelXXfdNXXt2jXVq1cvHXnkkdWex7lqm/XJ8t3vfjfz2p7rY3BKqycL32+//VJKKfXr1y/17t07/fjHP04HH3xw2m233TIn41PK/TH4y/LsvvvumT6zbNmydOONN+bkGLxkyZLUvHnzzDx7Vfr27Zv69OlT49xoueozG5ol18fglFa/LhxwwAFpzJgxmWXnn39+6tq1a9p6661T7969qxWLc9lvvixLnz590siRI1NKq78YkqvX7ZRWv6/ce++9M58hq0avf/e73019+/ZN++23X3rssccy63/00Uc5fT59WZ79998/81q5ePHinD2fyB2FEXIiF9cAr82ak0KltHoehJKSknT++ednXlBXrlyZs2HN65ul6htGVd+CnzlzZk4zrXmyveqbVpdcckk68cQTq6235geQXF0PfH2zVL3IfHHCxWxavHhx5veqSZDvv//+NH/+/PT000+nvfbaK3MJgbqwrjzPPPNM2nvvvdOYMWPSihUr0t///vecTgC/ppNOOinz5ue0005LW2yxRdppp53SqaeeWm1isVxeQ359slRNtJjLPpPS6g/hJ510UmratGk6+OCDq31j8Pe//31q3bp1zq4pvSFZ7r777tSmTZvMm8Wnnnoqp32msrIyHXvssemss85K3/72tzMFrJRWfwg94YQT0plnnplWrlyZOSmfqz6zPll+8IMf1PjN01yrrKxMCxcuzFx+rqo9cllYXN8sq1atyuQoLy/PeZ9599130/7775+6d++ehgwZkkpKStJDDz2UKisr09y5c9M555yTevfunT755JOc95kNyZOLyyfU5B//+EeqV69eOvDAA9OJJ56Ymjdvnk4//fSU0urLBrRs2TLNmDFjnZdBq6ssLVq0qDZCLddWrVqVVqxYkU455ZR01FFHpeXLl1f7ksc777yTysrK0tFHH535m1y1z/pmOeaYYzI55syZk7O5yubNm1dttNXEiRMzxYg1T8LXdBIqn3mqVFZW5uRypSml9Mwzz2TeQ1SpqKhIXbt2rZaxLmxolnnz5uX0ZPusWbOqvaf7r//6r1S/fv108cUXp5tuuintvffeqU+fPplL3uTyeLO+WaqOxbl8Pq3pkEMOybwmXnvttal58+apdevW1d5j1OVreW15Hn/88ZTS6n308ccf56xt3nzzzTR06NC03377pc6dO6fDDjsszZgxIy1btiy9+OKLaeutt672+S6XfWZ9spx00kmZHLnuM0888UTq06dP+s1vfpMOPvjgzBcxFy5cmClS1HQ54HzmqXoNX758ec5OKq/5nrLqvcuvf/3rtP3222dGhFRUVGT6Si77zPpmqZLLPlNRUZEWLVqU+vfvn4444og0bty4NGrUqNS0adP0u9/9Lj322GNpzJgxaY899kh/+tOf1sqWryxVBepc9Zmq99+dOnXKjExOafVrxE477ZTuvPPOtOuuu2bej1b9Ta5sTJ7y8vKcFj3JPoURNhurVq3KHBSrTjBfcMEF6aOPPkrnnXdeOvLII9OSJUvq5ETul2UZPHhwzibO/qI1X0AvvvjizCV4UkrpqquuSj/72c/q7IPyl2W5/vrr6yxLSqsvafDFIboDBw5M3/72t+ssw/rkGTRoUJ1lqOq3d9xxR7rsssvSD3/4w9SxY8f07rvvpj/96U/pa1/7WjrzzDNrnMQ6H1l+8IMf1Nlz6aOPPkqjRo3KTKC25rGke/fu6fzzz6+THOuTZUOuJ/xVTZ48OTVv3jyVlJSsNQH9T37yk3TggQfWyXG30LLU5I9//GMqKSmpdvmAYszy7rvvpvvvvz9ddtll6aijjqp229ixY9Nuu+1WZ8/rQszzwgsvpBNOOCGdfvrpmUtnpbT6kgY77rhjjSeWN+csXyx8P/3006l+/frVLlVVtc7TTz+d6tWrl9PLTW5ollzNwVXbFwKq3mtNmjSp2kiNFStWpFtuuSX97W9/K5g848aNy0me2rJUHf8rKipSt27dqt33//7v/+akALoxWf72t7/lrCBSW55PP/00nXvuudW+hfv666+nkpKSasvynWXNESx1kaV3796Zyw6ddtppqVWrVqm0tDRde+21a02Anu88ubgiQk1Z3n777XTiiSemgQMHrjXS6eGHH04lJSXpjTfeKJgsuRrN+MUsM2bMSJ06dUo77bRT6tevX7XbPvjgg9SsWbOcjqLemDx33313zrPU9L77s88+S507d07Dhg3Lyf1/1Sy5/Kzwxf00adKkNGDAgPS9730v7bDDDun222/P3DZnzpzUpUuXdPXVVxddlptvvjmVlJSkU089NV1yySWpRYsWmUuXPvjgg6lr167p008/zVmxqNDykFsKI2xW1vy23n333ZcaNmyYdthhh9SgQYM6v77furLk+hrcNWVJaXUx4tBDD00ppTR69OhUUlKSs+vybgpZ1lRRUZE+//zzdMwxx6Qrr7wybzkKJc8zzzyTSkpKUmlpaXrxxRczy//85z+nd999t2izLFq0qNqIuMrKyvTpp5+msrKynH242Jgsv//97+s0y7PPPptKSkrSt7/97WonJM8555x0+umn1+kojULK8kXl5eXpkEMOSccff3xatmxZ3nIUSpZf//rXaeDAgdX68XnnnZcOP/zwtUZgFluemj6Un3/++al3797rnKthc8vyxhtvpOuvv36tiSuvv/76VK9evfTrX/+62vIpU6akHXfcMSejnjaFLF9UdRmro48+Op1yyimpYcOG6e23396s89SUZc0+vHLlyrRkyZLUvXv3NGnSpJRSSqNGjUolJSVZP9FdSFlqy7OmqpHbVZ9hXn311bTHHnvk5HIghZ6l6r3ChRdemP7nf/4nnX322alTp07p3XffTVdddVVq1qxZ+tnPfpaTEcuFlKe2/fT++++nxx57LJOrql//4Q9/SD179szJt6U3hSyPPvpoatCgQWrfvn365z//mVleXl6e+vTpU22k0eaa58ue21V9dNy4celrX/tatc92m3OWdeVZsmRJWrVqVSorK0v3339/ZvmKFSvSwQcfnPliSjYLNoWepaKiIt1xxx1p7733TgMGDMjMK5LS6nn2evXqlbMCVqHlIfcURtjsVFZWZg5Kffr0SW3bts3b9f0KJUtVgeayyy5LQ4cOTdddd11q3LhxTicI3BSyfNHo0aNTly5dapwAMx/ymWfFihXp9ttvz1xTNZ8v9IWUpSaXXnpp6tGjR87motlUsjzzzDOpU6dOaZ999kmnnXZaOvHEE1Pr1q1z9m3pTSXLF1199dWpVatW6eOPP853lLxnmT59emrdunW69tpr01133ZVGjBiR2rRpk7fX7ELLU+XVV19NP/rRj1KrVq3y+gWCus7y1ltvpbZt26aSkpI0atSoat+gX7p0aRozZkwqKSlJl1xySXrppZfS/Pnz08iRI1P37t2z/s3/TSVLTf7xj3+kkpKS1LZt25y81yqkPOuTpeqLJ1UnwS6//PLUvHnzzKU5N8csX5antkvYXHTRRWnfffet0z5cSFlSSum3v/1tKikpSR07dkyTJ0/OLL/mmmty8v68kPJ8WZbaiub9+/fPetF8U8py7733pnr16qX+/fune++9N7311ltp5MiRqVOnTumDDz7IapZCy7MhrwdVlztbczTq5prly/JUVFSkJUuWpH333TeNHj06/fvf/06fffZZGj16dOZqCcWYJaWUPv/887WuVHHWWWelo446Kn3++edZPy9QaHmoGwojbJZWrVqVzjvvvFRSUpLTSfk2tSxVk8q2bt262pvpYs/ywAMPpGHDhqV27drV+WieQs5TSENBCylLlXvvvTcNHTo0bbHFFnnvN4WS5V//+le65JJLUr9+/dIPf/jDvBYiCilLSv/50L5gwYK055571tl8QYWe5e9//3v62te+lnr06JF69+6d99fJQsuzfPny9Kc//Skde+yxRZVlyZIl6dRTT03f//7307hx4zKXJF3zpGhFRUW68847U2lpadp6661Tz549U6dOnbJ+sn1TyFLbCZ/y8vJ05plnppYtW6bp06dnNUuh5dnQLL169Up77713atSoUdbfhxZSlo3JM3369HTJJZekVq1aZf25vqlleeONN9Ill1ySufJALt+PFlKe9cmy5gnAadOmpYsvvji1atUqJxN4b0pZUlp9ab6ysrLUoUOH1LNnz7T99tvn5P15IeXZ0Od2SimdfPLJaYcddkgrVqzI6gnlQsqyIXnuv//+VFJSkrbffvu07777pm233TZv+6lQsqy5L2bMmJHOPffc1LJly5x8aanQ8lB3FEbYLK1atSr95je/qfPLZxV6lsmTJ6eSkpKcfDjelLNMmzYtHX300XU6iey6FFoeavbKK6+kgQMH5uxa9ptqlpRS3iYWr0khZUlp9RvqfFwmqiaFkmX+/Plpzpw5BTNRYaHlWb58eUHsp5TqLsuyZcvSuHHj0n333ZdS+s8H9C8WJFJaPZnqM888kx577LGcXGN/U8lS0wmfF154Ie288845GYFQaHnWN8uqVavS/PnzU+vWrVP9+vVzcjKjkLJsSJ6UVl+W6Igjjkg77rhjTkaFbYpZqi7rlVJuRy0XUp4N2U8zZ85MAwYMSNttt11OPu9uqlk+/fTT9Oabb6aXX345Z3MGFVKeDclS1W8nTZqUk8siF1KWDc3zj3/8I11xxRXptttuy8kXlzbVLIsXL0433XRT+ta3vpWz82qFloe6ozDCZquQhrEVUpZCObmSUmFlyee8AzUptDzUbM25CPKtkLIAfFVffI9w3333pZKSknT++ednPqCuXLkyvf/++7L8/yyffvppSml1QbjqEikLFiwomjzrk2XlypXpk08+SRMmTMjplwkKKcv65lm1alWaO3dumjVrVpo1a1bRZ6kqfFZUVNTZnHaFlGd999O8efPSzJkzc3r829SyrFy5ss5G4xZSnvV9PXjnnXeKKsuX5al6H7FixYqcFdE2xSxffD1YuXJlQbynqcs81A2FEQAAoCCtWrUq8wWTe++9N/PtvY8++iidd9556cgjj0xLliypky+hbEpZBg8enJYtW5bzHIWY58uyHHHEEdW+dV8sWdYnz+DBg9Pnn38uSw3P7ULaT3WZZ1PaT4WUpS5fDwotz/r232LLsj55jjjiiILZT4WUpZjf05B7CiMAAEDBqqyszFwS77777ksNGzZMO+ywQ2rQoEGdX8JgU8mSj/mmCilPbVnq169fMPspH1nWlaeQ9lOhZSm0/VQofbjQ9lMhZdFnZNkU8mwqWYr9PQ25VZJSSgEAAFCgqj6ylJSURN++fWPq1Knx9NNPxy677CJLgWQptDyybBp5ZNk08shS+FkKLY8sm0YeWTadPORIXVZhAAAANsaqVavSeeedl0pKStIrr7wiSwFmKbQ8smwaeWTZNPLIUvhZCi2PLJtGHlk2nTxkX718F2YAAADWx8477xwvvfRS7LrrrvmOIss6FFIeWWpXSHlkqV0h5ZGl8LNEFFYeWWpXSHlkqV2h5SG7XEoLAADYJKSUoqSkJN8xIkKWdSmkPLLUrpDyyFK7QsojS80KKUtEYeWRpXaFlEeW2hVaHrJLYQQAAAAAACgaLqUFAAAAAAAUDYURAAAAAACgaCiMAAAAAAAARUNhBAAAAAAAKBoKIwAAAAAAQNFQGAEAAAAAAIqGwggAAAAAAFA0FEYAAAAAAICioTACAAAAAAAUDYURAAAAAACgaCiMAAAAAAAARUNhBAAAAAAAKBoKIwAAAAAAQNFQGAEAAAAAAIqGwggAAAAAAFA0FEYAAAAAAICioTACAAAAAAAUjQb5DrAxKisrY/bs2dGyZcsoKSnJdxwAAAAAACCPUkrx2WefRadOnaJevXWPCdkkCyOzZ8+Ozp075zsGAAAAAABQQGbNmhXbbLPNOtfZJAsjLVu2jIjVD7BVq1Z5TgMAAAAAAOTT4sWLo3Pnzpn6wbpskoWRqstntWrVSmEEAAAAAACIiFiv6TdMvg4AAAAAABQNhREAAAAAAKBoKIwAAAAAAABFY5OcYwQAAAAAANZHRUVFrFy5Mt8x+IoaNmwY9evXz8q2FEYAAAAAANjspJRizpw5sXDhwnxHIUvatGkTpaWl6zXB+roojAAAAAAAsNmpKoq0b98+mjVr9pVPppM/KaVYtmxZzJs3LyIiOnbs+JW2pzACAAAAAMBmpaKiIlMUadeuXb7jkAVNmzaNiIh58+ZF+/btv9JltUy+DgAAAADAZqVqTpFmzZrlOQnZVLU/v+qcMQojAAAAAABsllw+a/OSrf2pMAIAAAAAABQNhREAAAAAAKBomHwdAAAAAICi0XXk+Dq7r/fGDszett57L7p16xYvv/xy7L777lnbbq707t07dt9997jhhhvyHWUtRozwlXUdOT7zAwAAAAAAX+bjjz+O733ve7H99ttHvXr14txzz62z+1YYAQAAAAAA6lR5eXlstdVWcckll8Ruu+1Wp/etMAIAAAAAAAWgsrIyrr322ujevXs0btw4unTpEldeeWW1dd5999046KCDolmzZrHbbrvFxIkTM7fNnz8/jjvuuNh6662jWbNmscsuu8S9995b7e979+4d55xzTowYMSLatm0bpaWl8dOf/rTaOiUlJfGb3/wmjjjiiGjWrFn06NEjHn744WrrTJs2LQ499NBo0aJFdOjQIU488cT49NNP1/uxdu3aNW688cY46aSTonXr1uv9d9mwwYWRZ599NgYNGhSdOnWKkpKSeOihh2pd98wzz4ySkpK1riG2YMGCOP7446NVq1bRpk2bOO2002LJkiUbGgUAAAAAADYbo0aNirFjx8bo0aPj9ddfj3vuuSc6dOhQbZ2LL744zj///Jg6dWpsv/32cdxxx8WqVasiImL58uWx5557xvjx42PatGkxdOjQOPHEE+OFF16oto0777wzmjdvHs8//3xce+21cfnll8cTTzxRbZ0xY8bE0UcfHa+++mocdthhcfzxx8eCBQsiImLhwoXRp0+f6NWrV7z44osxYcKEmDt3bhx99NE5bJ3s2eDCyNKlS2O33XaLcePGrXO9P//5zzFp0qTo1KnTWrcdf/zxMX369HjiiSfi0UcfjWeffTaGDh26oVEAAAAAAGCz8Nlnn8WNN94Y1157bZx88snxta99Lb75zW/G6aefXm29888/PwYOHBjbb799jBkzJt5///14++23IyJi6623jvPPPz9233332G677eLss8+OAQMGxAMPPFBtG7vuumtcdtll0aNHjzjppJNir732iieffLLaOt///vfjuOOOi+7du8dVV10VS5YsyRRYbr755ujVq1dcddVV0bNnz+jVq1f89re/jaeeeirefPPNHLZSdjTY0D849NBD49BDD13nOh999FGcffbZ8fjjj8fAgQOr3TZjxoyYMGFCTJ48Ofbaa6+IiPjFL34Rhx12WFx//fU1FlIAAAAAAGBzNmPGjCgvL4++ffuuc71dd90183vHjh0jImLevHnRs2fPqKioiKuuuioeeOCB+Oijj2LFihVRXl4ezZo1q3UbVduZN29eres0b948WrVqlVnnlVdeiaeeeipatGixVr533nkntt9++/V4xPmzwYWRL1NZWRknnnhiXHDBBbHzzjuvdfvEiROjTZs2maJIRES/fv2iXr168fzzz8cRRxyx1t+Ul5dHeXl55v+LFy/OdmwAAAAAAMibpk2brtd6DRs2zPxeUlISEavPy0dEXHfddXHjjTfGDTfcELvssks0b948zj333FixYkWt26jaTtU21medJUuWxKBBg+Kaa65ZK19VsaaQZX3y9WuuuSYaNGgQ55xzTo23z5kzJ9q3b19tWYMGDaJt27YxZ86cGv/m6quvjtatW2d+OnfunO3YAAAAAACQNz169IimTZuudUmrDfHcc8/F4YcfHieccELstttusd122+Xk0lZ77LFHTJ8+Pbp27Rrdu3ev9tO8efOs31+2ZbUwMmXKlLjxxhvjjjvuyFSqsmHUqFGxaNGizM+sWbOytm0AAAAAAMi3Jk2axIUXXhgjRoyIu+66K955552YNGlS3H777eu9jR49esQTTzwR//znP2PGjBnxgx/8IObOnZv1rMOGDYsFCxbEcccdF5MnT4533nknHn/88TjllFOioqJivbczderUmDp1aixZsiQ++eSTmDp1arz++utZz/tFWb2U1v/93//FvHnzokuXLpllFRUV8ZOf/CRuuOGGeO+996K0tHSta5WtWrUqFixYEKWlpTVut3HjxtG4ceNsRgUAAAAAoAi9N3bgl6+UJ6NHj44GDRrEpZdeGrNnz46OHTvGmWeeud5/f8kll8S7774b/fv3j2bNmsXQoUNj8ODBsWjRoqzm7NSpUzz33HNx4YUXxiGHHBLl5eWx7bbbxoABA6JevfUfj9GrV6/M71OmTIl77rkntt1223jvvfeymveLSlJKaaP/uKQk/vznP8fgwYMjImL+/Pnx8ccfV1unf//+ceKJJ8Ypp5wSO+ywQ8yYMSN22mmnePHFF2PPPfeMiIi//e1vMWDAgPjwww/Xa/L1xYsXR+vWrWPRokXRqlWrjY1PlnQdOT7zeyEfVAAAAACA4rB8+fKYOXNmdOvWLZo0aZLvOGTJuvbrhtQNNnjEyJIlS+Ltt9/O/H/mzJkxderUaNu2bXTp0iXatWtXbf2GDRtGaWlp7LDDDhERseOOO8aAAQPijDPOiNtuuy1WrlwZZ511Vhx77LHrVRQBAAAAAADYWBs8x8iLL74YvXr1ygxxGT58ePTq1SsuvfTS9d7G3XffHT179oy+ffvGYYcdFt/85jfjV7/61YZGAQAAAAAA2CAbPGKkd+/esSFX36rpWmBt27aNe+65Z0PvGgAAAAAA4CvZ4BEjAAAAAAAAmyqFEQAAAAAANksbcvUjCl+29qfCCAAAAAAAm5WGDRtGRMSyZcvynIRsqtqfVft3Y23wHCMAAAAAAFDI6tevH23atIl58+ZFRESzZs2ipKQkz6nYWCmlWLZsWcybNy/atGkT9evX/0rbUxgBAAAAAGCzU1paGhGRKY6w6WvTpk1mv34VCiMAAAAAAGx2SkpKomPHjtG+fftYuXJlvuPwFTVs2PArjxSpojACAAAAAMBmq379+lk7oc7mweTrAAAAAABA0VAYAQAAAAAAiobCCAAAAAAAUDQURgAAAAAAgKKhMAIAAAAAABQNhREAIKPryPHRdeT4fMcAAAAAyBmFEQAAAAAAoGgojAAAAAAAAEVDYQQAAAAAACgaCiMAAAAAAEDRUBgBAAAAAACKhsIIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEVDYQQAAAAAACgaCiMAAAAAAEDRUBgBAAAAAACKhsIIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEVjgwsjzz77bAwaNCg6deoUJSUl8dBDD2VuW7lyZVx44YWxyy67RPPmzaNTp05x0kknxezZs6ttY8GCBXH88cdHq1atok2bNnHaaafFkiVLvvKDAQAAAAAAWJcNLowsXbo0dttttxg3btxaty1btixeeumlGD16dLz00kvxpz/9Kd544434zne+U229448/PqZPnx5PPPFEPProo/Hss8/G0KFDN/5RAAAAAAAArIcGG/oHhx56aBx66KE13ta6det44oknqi27+eabY5999okPPvggunTpEjNmzIgJEybE5MmTY6+99oqIiF/84hdx2GGHxfXXXx+dOnXaiIcBAAAAAADw5XI+x8iiRYuipKQk2rRpExEREydOjDZt2mSKIhER/fr1i3r16sXzzz9f4zbKy8tj8eLF1X4AAAAAAAA2VE4LI8uXL48LL7wwjjvuuGjVqlVERMyZMyfat29fbb0GDRpE27ZtY86cOTVu5+qrr47WrVtnfjp37pzL2AAAAAAAwGYqZ4WRlStXxtFHHx0ppbj11lu/0rZGjRoVixYtyvzMmjUrSykBAAAAAIBissFzjKyPqqLI+++/H3//+98zo0UiIkpLS2PevHnV1l+1alUsWLAgSktLa9xe48aNo3HjxrmICgAAAAAAFJGsjxipKoq89dZb8b//+7/Rrl27areXlZXFwoULY8qUKZllf//736OysjL23XffbMcBAAAAAADI2OARI0uWLIm333478/+ZM2fG1KlTo23bttGxY8c46qij4qWXXopHH300KioqMvOGtG3bNho1ahQ77rhjDBgwIM4444y47bbbYuXKlXHWWWfFscceG506dcreIwMAAAAAAPiCDS6MvPjii3HQQQdl/j98+PCIiDj55JPjpz/9aTz88MMREbH77rtX+7unnnoqevfuHRERd999d5x11lnRt2/fqFevXgwZMiRuuummjXwIAAAAAAAA62eDCyO9e/eOlFKtt6/rtipt27aNe+65Z0PvGgAAAAAA4CvJ+hwjAAAAAAAAhUphBAAAAAAAKBoKIwAAAAAAQNFQGAEAAAAAAIqGwggAAAAAAFA0FEYAAAAAAICioTACAAAAAAAUDYURAAAAAACgaCiMAAAAAAAARUNhBAAAAAAAKBoKIwAAAAAAQNFQGAEAAAAAAIqGwggAAAAAAFA0FEYAAAAAAICi0SDfAdg0dR05Pt8RAAAAAABggxkxAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEVDYQQAAAAAACgaCiMAAAAAAEDRUBgBAAAAAACKhsIIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEVDYQQAAAAAACgaCiMAAAAAAEDRaJDvAABA4ek6cnzm9/fGDsxjEgAAAIDsMmIEAAAAAAAoGgojAAAAAABA0djgwsizzz4bgwYNik6dOkVJSUk89NBD1W5PKcWll14aHTt2jKZNm0a/fv3irbfeqrbOggUL4vjjj49WrVpFmzZt4rTTToslS5Z8pQcCAAAAAADwZTa4MLJ06dLYbbfdYty4cTXefu2118ZNN90Ut912Wzz//PPRvHnz6N+/fyxfvjyzzvHHHx/Tp0+PJ554Ih599NF49tlnY+jQoRv/KAAAAAAAANbDBk++fuihh8ahhx5a420ppbjhhhvikksuicMPPzwiIu66667o0KFDPPTQQ3HsscfGjBkzYsKECTF58uTYa6+9IiLiF7/4RRx22GFx/fXXR6dOnb7CwwEAAAAAAKhdVucYmTlzZsyZMyf69euXWda6devYd999Y+LEiRERMXHixGjTpk2mKBIR0a9fv6hXr148//zzNW63vLw8Fi9eXO0HAAAAAABgQ2W1MDJnzpyIiOjQoUO15R06dMjcNmfOnGjfvn212xs0aBBt27bNrPNFV199dbRu3Trz07lz52zGJou6jhwfXUeOz3cMAAAAAACoUVYLI7kyatSoWLRoUeZn1qxZ+Y4EAAAAAABsgrJaGCktLY2IiLlz51ZbPnfu3MxtpaWlMW/evGq3r1q1KhYsWJBZ54saN24crVq1qvYDAAAAAACwobJaGOnWrVuUlpbGk08+mVm2ePHieP7556OsrCwiIsrKymLhwoUxZcqUzDp///vfo7KyMvbdd99sxgEAAAAAAKimwYb+wZIlS+Ltt9/O/H/mzJkxderUaNu2bXTp0iXOPffcuOKKK6JHjx7RrVu3GD16dHTq1CkGDx4cERE77rhjDBgwIM4444y47bbbYuXKlXHWWWfFscceG506dcraAwMAAAAAAPiiDS6MvPjii3HQQQdl/j98+PCIiDj55JPjjjvuiBEjRsTSpUtj6NChsXDhwvjmN78ZEyZMiCZNmmT+5u67746zzjor+vbtG/Xq1YshQ4bETTfdlIWHAwAAAAAAULuSlFLKd4gNtXjx4mjdunUsWrTIfCN50nXk+HXe/t7YgXWUBIBsqun47pgOAAAAFLoNqRtkdY4RAAAAAACAQrbBl9ICAIrLmqNIjB4BAAAANnVGjAAAAAAAAEXDiBEAKHJfNm/UhmzDiBIAAACg0BkxAgAAAAAAFA0jRgCAjZKNkSYAAAAAdc2IEQAAAAAAoGgojAAAAAAAAEVDYQQAAAAAACgaCiMAAAAAAEDRUBgBAAAAAACKhsIIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEVDYQQAAAAAACgaCiMAAAAAAEDRUBgBAAAAAACKhsIIAAAAAABQNBRGAAAAAACAoqEwAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEVDYQQAAAAAACgaCiMAAAAAAEDRaJDvAADApqPryPH5jgAAAADwlRgxAgAAAAAAFA2FEQAAAAAAoGgojAAAAAAAAEVDYQQAAAAAACgaWS+MVFRUxOjRo6Nbt27RtGnT+NrXvhb/9V//FSmlzDoppbj00kujY8eO0bRp0+jXr1+89dZb2Y4CAAAAAABQTdYLI9dcc03ceuutcfPNN8eMGTPimmuuiWuvvTZ+8YtfZNa59tpr46abborbbrstnn/++WjevHn0798/li9fnu04AAAAAAAAGQ2yvcF//vOfcfjhh8fAgQMjIqJr165x7733xgsvvBARq0eL3HDDDXHJJZfE4YcfHhERd911V3To0CEeeuihOPbYY7MdCQAAAAAAICJyMGJk//33jyeffDLefPPNiIh45ZVX4h//+EcceuihERExc+bMmDNnTvTr1y/zN61bt4599903Jk6cWOM2y8vLY/HixdV+AAAAAAAANlTWR4yMHDkyFi9eHD179oz69etHRUVFXHnllXH88cdHRMScOXMiIqJDhw7V/q5Dhw6Z277o6quvjjFjxmQ7KgAAAAAAUGSyPmLkgQceiLvvvjvuueeeeOmll+LOO++M66+/Pu68886N3uaoUaNi0aJFmZ9Zs2ZlMTEAAAAAAFAssj5i5IILLoiRI0dm5grZZZdd4v3334+rr746Tj755CgtLY2IiLlz50bHjh0zfzd37tzYfffda9xm48aNo3HjxtmOCgAAAAAAFJmsjxhZtmxZ1KtXfbP169ePysrKiIjo1q1blJaWxpNPPpm5ffHixfH8889HWVlZtuMAAAAAAABkZH3EyKBBg+LKK6+MLl26xM477xwvv/xy/Pd//3eceuqpERFRUlIS5557blxxxRXRo0eP6NatW4wePTo6deoUgwcPznYcAKAGXUeOz3cEAAAAgLzIemHkF7/4RYwePTp+9KMfxbx586JTp07xgx/8IC699NLMOiNGjIilS5fG0KFDY+HChfHNb34zJkyYEE2aNMl2HAAAAAAAgIySlFLKd4gNtXjx4mjdunUsWrQoWrVqle84RenLvmn83tiBdZQEgI2RqxEjjv8AAABAPmxI3SDrc4wAAAAAAAAUKoURAAAAAACgaCiMAAAAAAAARUNhBAAAAAAAKBoKIwAAAAAAQNFQGAEAAAAAAIqGwggAAAAAAFA0FEYAAAAAAICioTACAAAAAAAUDYURAAAAAACgaCiMAAAAAAAARUNhBAAAAAAAKBoKIwAAAAAAQNFQGAEAAAAAAIqGwggAAAAAAFA0FEYAAAAAAICioTACAAAAAPD/2rvv8KjKvP/j3wklQIDQOwgIShEUpAUeEGlhKUpTWQUVUSwUhUV6WVzEAj6LrFjXtawIPHaUBXVVZFUQpBMQEBQjvUgJkJBkPr8/8puzGUgoOmfmhHm/rstLOTlkPt7nO2fOnPvc9w0gatAxAgAAAAAAAAAAogYdIwAAAAAAAAAAIGrQMQIAAAAAAAAAAKJG/kgHAAAA4VF9zMJIRwAAAAAAAIg4RowAAAAAAAAAAICoQccIAAAAAAAAAACIGnSMAAAAAAAAAACAqEHHCAAAAAAAAAAAiBp0jAAAAAAAAAAAgKhBxwgAAAAAAAAAAIgadIwAAAAAAAAAAICoQccIAAAAAAAAAACIGnSMAAAAAAAAAACAqEHHCAAAAAAAAAAAiBqudIzs2rXL+vXrZ6VLl7bChQtbgwYN7LvvvnN+LskmTZpkFStWtMKFC1uHDh1s27ZtbkQBAAAAAAAAAABwhLxj5Ndff7VWrVpZgQIFbNGiRbZp0yZ76qmnrGTJks4+Tz75pM2aNcuef/55+/bbby0uLs4SExMtNTU11HEAAAAAAAAAAAAc+UP9C5944gmrWrWqvfLKK862GjVqOP8tyWbOnGkTJkywG2+80czMXn/9dStfvry9//771rdv31BHAgAAAAAAAAAAMDMXRowsWLDAmjRpYjfddJOVK1fOGjVqZC+99JLz8x9//NH27t1rHTp0cLbFx8db8+bNbdmyZTn+zrS0NDt27FjQPwAAAAAAAAAAABcr5B0jO3bssOeee85q165tH3/8sd1///02bNgwe+2118zMbO/evWZmVr58+aC/V758eednZ3rssccsPj7e+adq1aqhjg0AAAAAAAAAAKJAyDtG/H6/NW7c2KZNm2aNGjWyQYMG2T333GPPP//8b/6dY8eOtaNHjzr/JCcnhzAxAAAAAAAAAACIFiHvGKlYsaLVq1cvaFvdunXt559/NjOzChUqmJnZvn37gvbZt2+f87MzxcbGWvHixYP+AQAAAAAAAAAAuFgh7xhp1aqVbdmyJWjb1q1b7bLLLjOzrIXYK1SoYJ999pnz82PHjtm3335rCQkJoY4DAAAAAAAAAADgyB/qXzh8+HBr2bKlTZs2zW6++WZbsWKFvfjii/biiy+amZnP57OHHnrIpk6darVr17YaNWrYxIkTrVKlStajR49QxwEAAGFUfcxC579/erxrBJMAAAAAAADkLOQdI02bNrX33nvPxo4da4888ojVqFHDZs6cabfddpuzz6hRo+zEiRM2aNAgO3LkiP3P//yPLV682AoVKhTqOAAAAAAAAAAAAI6Qd4yYmXXr1s26deuW6899Pp898sgj9sgjj7jx8gAAAAAAAAAAADkK+RojAAAAAAAAAAAAXuXKiBEAAADWGwEAAAAAAF7EiBEAAAAAAAAAABA16BgBAAAAAAAAAABRg44RAAAAAAAAAAAQNegYAQAAAAAAAAAAUYOOEQAAAAAAAAAAEDXoGAEAAAAAAAAAAFGDjhEAAAAAAAAAABA18kc6AC5N1ccsdP77p8e7RjAJAAAAAAAAAAD/xYgRAAAAAAAAAAAQNegYAQAAAAAAAAAAUYOOEQAAAAAAAAAAEDXoGAEAAAAAAAAAAFGDjhEAAAAAAAAAABA16BgBAAAAAAAAAABRg44RAAAAAAAAAAAQNegYAQAAAAAAAAAAUYOOEQAAAAAAAAAAEDXoGAEAAAAAAAAAAFGDjhEAAAAAAAAAABA16BgBAAAAAAAAAABRI3+kAwDwvupjFjr//dPjXSOYBAAAAAAAAAB+H0aMAAAAAAAAAACAqEHHCAAAAAAAAAAAiBp0jAAAAAAAAAAAgKjBGiMAAFxiWBcIAAAAAAAgd4wYAQAAAAAAAAAAUYMRI7hg2Z9ABi4ET60DAAAAAAAA8BpGjAAAAAAAAAAAgKhBxwiAINXHLGR0EAAAAAAAAIBLlusdI48//rj5fD576KGHnG2pqak2ePBgK126tBUtWtR69+5t+/btczsKAAAAAAAAAACIcq6uMbJy5Up74YUXrGHDhkHbhw8fbgsXLrS33nrL4uPjbciQIdarVy/7+uuv3YwDAEDUYQQYAAAAAABAMNdGjKSkpNhtt91mL730kpUsWdLZfvToUXv55Zftf//3f61du3Z27bXX2iuvvGLffPONLV++3K04AAAAAAAAAAAA7nWMDB482Lp27WodOnQI2r5q1SpLT08P2l6nTh2rVq2aLVu2LMfflZaWZseOHQv6BwAAAAAAAAAA4GK5MpXWvHnzbPXq1bZy5cqzfrZ3714rWLCglShRImh7+fLlbe/evTn+vscee8ymTJniRlTgkpd9Gp2fHu/qud8HAAAAAAAAAOEU8hEjycnJ9uCDD9qcOXOsUKFCIfmdY8eOtaNHjzr/JCcnh+T3AgAAAAAAAACA6BLyESOrVq2y/fv3W+PGjZ1tmZmZtnTpUnvmmWfs448/ttOnT9uRI0eCRo3s27fPKlSokOPvjI2NtdjY2FBHBfA7MXoEAAAAAAAAQF4T8o6R9u3b24YNG4K2DRgwwOrUqWOjR4+2qlWrWoECBeyzzz6z3r17m5nZli1b7Oeff7aEhIRQxwEAAAAAAAAAAHCEvGOkWLFidtVVVwVti4uLs9KlSzvbBw4caCNGjLBSpUpZ8eLFbejQoZaQkGAtWrQIdRwAHseoEwAAAAAAAADh5Mri6+fz17/+1WJiYqx3796WlpZmiYmJ9uyzz0YiCgAAAAAAAAAAiCJh6RhZsmRJ0J8LFSpks2fPttmzZ4fj5QEAAAAAAAAAAMzMLCbSAQAAAAAAAAAAAMIlIlNpAYi87Gt7eEUgUyjWGmHtEgAAAAAAAAA5YcQIAAAAAAAAAACIGnSMAAAAAAAAAACAqEHHCAAAAAAAAAAAiBqsMQJPYD2IvI9jCAAAAAAAACAvYMQIAAAAAAAAAACIGowYAS4hgVEbuY3YyD6qA8Clh/c4AAAAAADA+TFiBAAAAAAAAAAARA1GjAB5UDjW8/g9T57z1DqAc2FNIgAAAAAAEEmMGAEAAAAAAAAAAFGDESMAogpPqocG7QgAAAAAAIC8ihEjAAAAAAAAAAAgatAxAgAAAAAAAAAAogZTacF1TLkDs8guyH6xrx3Yn3oFAAAAAAAALj2MGAEAAAAAAAAAAFGDESPI0xiNcmnKbYTHhRzjSI5MAQAAAAAAAOB9jBgBAAAAAAAAAABRgxEjgIcxIiZvOd/aJBxPAAAAAAAAIPIYMQIAAAAAAAAAAKIGI0YA5BmMuLgw5xu58nt/78Xuy7GCGev/AAAAAAAA72DECAAAAAAAAAAAiBqMGAFycLFPu+e0f26/gyfpveNijkUkj1uoX/t8vy8U9Q8AAAAAAAB4FSNGAAAAAAAAAABA1GDECKLeb33aPbf58r0wj74XMkQL2hoAAAAAAADIWxgxAgAAAAAAAAAAogYjRhBWXlmLwItP+XulbfIiLx5PAAAAAAAAAN7EiBEAAAAAAAAAABA1GDGCc/Lik/jnW9vDzdEWeak9LnX8f3tzZFG0HhcAAAAAAADkHYwYAQAAAAAAAAAAUYMRI/CccIz88IqLebqeJ/FxLqGoD2oMAAAAAAAA0SDkI0Yee+wxa9q0qRUrVszKlStnPXr0sC1btgTtk5qaaoMHD7bSpUtb0aJFrXfv3rZv375QRwEAAAAAAAAAAAgS8hEjX375pQ0ePNiaNm1qGRkZNm7cOOvUqZNt2rTJ4uLizMxs+PDhtnDhQnvrrbcsPj7ehgwZYr169bKvv/461HHwG0TzU+PR/P+OS8+F1PP59uE9AQAAAAAAgEtNyDtGFi9eHPTnV1991cqVK2erVq2yNm3a2NGjR+3ll1+2N99809q1a2dmZq+88orVrVvXli9fbi1atDjrd6alpVlaWprz52PHjoU6NgAAAAAAAAAAiAKurzFy9OhRMzMrVaqUmZmtWrXK0tPTrUOHDs4+derUsWrVqtmyZcty7Bh57LHHbMqUKW5HxSXutz75ztoN0cvN45b9d//W9XSoK5hRBwAAAAAAABcr5GuMZOf3++2hhx6yVq1a2VVXXWVmZnv37rWCBQtaiRIlgvYtX7687d27N8ffM3bsWDt69KjzT3JyspuxAQAAAAAAAADAJcrVESODBw+2jRs32ldfffW7fk9sbKzFxsaGKBUAAAAAAAAAAIhWrnWMDBkyxD766CNbunSpValSxdleoUIFO336tB05ciRo1Mi+ffusQoUKbsVBNqGYwgcAAAAAAAAAgLwo5FNpSbIhQ4bYe++9Z59//rnVqFEj6OfXXnutFShQwD777DNn25YtW+znn3+2hISEUMcBAAAAAAAAAABwhHzEyODBg+3NN9+0Dz74wIoVK+asGxIfH2+FCxe2+Ph4GzhwoI0YMcJKlSplxYsXt6FDh1pCQkKOC68DF4uFiOE2aiz0GMl2cahBAAAAAACA3y7kHSPPPfecmZm1bds2aPsrr7xid955p5mZ/fWvf7WYmBjr3bu3paWlWWJioj377LOhjgIAAAAAAAAAABAk5B0jks67T6FChWz27Nk2e/bsUL888hCeeM4dbZO3Mfoh2MW2R2B/2g4AAAAAAABuCPkaIwAAAAAAAAAAAF4V8hEjQKgwagLh5Fa9XcjvZYQJAAAAAAAAED6MGAEAAAAAAAAAAFGDESMA4CGX+voaFzM6hpE0AAAAAAAAcAMjRgAAAAAAAAAAQNRgxAgcrOkBeAfvRwAAAAAAAMAdjBgBAAAAAAAAAABRg44RAAAAAAAAAAAQNegYAQAAAAAAAAAAUYM1RgAAUSH7ui0/Pd41gkl+G9adAQAAAAAACA1GjAAAAAAAAAAAgKjBiJEoxxPIACKF8w/M8v5IHgAAAAAAkPcwYgQAAAAAAAAAAEQNRowAAC5ZjEoBAAAAAADAmRgxAgAAAAAAAAAAogYdIwAAAAAAAAAAIGowlRYAwPMuZkqsC1nAmwW/AQAAAAAAohcjRgAAAAAAAAAAQNSgYwQAAAAAAAAAAEQNOkYAAAAAAAAAAEDUoGMEAAAAAAAAAABEDTpGAAAAAAAAAABA1Mgf6QAAAIRS9TELIx0hZC6l/xcAAAAAAACvYMQIAAAAAAAAAACIGnSMAAAAT6g+ZiGjZAAAAAAAgOvoGAEAAAAAAAAAAFGDNUYAAHBB9pEPPz3e9YL3v5B9AQAAAAAA8NsxYgQAAAAAAAAAAEQNRowAAKLaxY7s8OprXEpyay/aEQAAAAAAhAIjRgAAAAAAAAAAQNSI6IiR2bNn2/Tp023v3r129dVX29/+9jdr1qxZJCMBABAk+yiFC3G+kQyMegAAAAAAAIisiI0YmT9/vo0YMcImT55sq1evtquvvtoSExNt//79kYoEAAAAAAAAAAAucT5JisQLN2/e3Jo2bWrPPPOMmZn5/X6rWrWqDR061MaMGXPOv3vs2DGLj4+3o0ePWvHixcMR95JysU8/A0C0CIzg4DyZt1zqI2/CPcrIzTVe3Px/Cfzu3H6vV9rR687XjgiPvFo/uDRRjwAAIK+4mH6DiEyldfr0aVu1apWNHTvW2RYTE2MdOnSwZcuWnbV/WlqapaWlOX8+evSomWX9j+Li+dNORjoCAHhS4HOF82TecqlfD2Svx3D8v+b2eqHI4eb/S+B35/Z7vdKOXne+dkR45NX6waWJegQAAHlF4FrlQsaCRGTEyO7du61y5cr2zTffWEJCgrN91KhR9uWXX9q3334btP+f//xnmzJlSrhjAgAAAAAAAACAPCQ5OdmqVKlyzn0iuvj6hRo7dqyNGDHC+bPf77fDhw9b6dKlzefzRTCZNx07dsyqVq1qycnJEZ9qzEtZvJaHLN7P4rU8ZMkbeciSN/KQxftZvJaHLHkjD1nyRh6yeD+L1/KQJW/kIYv3s3gtD1nyRh6y5J08yBopcvz4catUqdJ5941Ix0iZMmUsX758tm/fvqDt+/btswoVKpy1f2xsrMXGxgZtK1GihJsRLwnFixf3zJvSS1nMvJWHLDnzUhYzb+UhS+68lIcsufNSHrLkzEtZzLyVhyy581IesuTOS3nIkjMvZTHzVh6y5M5LeciSMy9lMfNWHrLkzkt5yJI7r+WJdvHx8Re0X4zLOXJUsGBBu/baa+2zzz5ztvn9fvvss8+CptYCAAAAAAAAAAAIpYhNpTVixAi74447rEmTJtasWTObOXOmnThxwgYMGBCpSAAAAAAAAAAA4BIXsY6RW265xQ4cOGCTJk2yvXv32jXXXGOLFy+28uXLRyrSJSM2NtYmT5581vRj0Z7FzFt5yOL9LGbeykOW3HkpD1ly56U8ZPF+FjNv5SFL7ryUhyy581Iesng/i5m38pAld17KQxbvZzHzVh6y5M5LeciSO6/lwcXxSVKkQwAAAAAAAAAAAIRDRNYYAQAAAAAAAAAAiAQ6RgAAAAAAAAAAQNSgYwQAAAAAAAAAAEQNOkYAAAAAAAAAAEDUoGMEAAAAAAAAAABEDTpGAAAAAAAAAABA1KBj5BIkKdIR8hQvtZeXsiBnXjtGXsuDnHnpOHkpS3ZeyuWFLF7IEOClLNl5LZeX8pDl/LyUiyy581IesuTOS3nIkjsv5SFLzryUxcxbeciSOy/lIUvuvJYHWXziyFwSTpw4YX6/3yRZ8eLFIx0nV5LM5/NFOoaZmWVmZlq+fPksIyPD8ufPb36/32JiItNX6KUsu3fvttWrV9vp06etevXq1rhx44jk8FqWQO0G/h3JY+S1PF46Tl7KYuat4+SlLMnJyfbFF1/YiRMnrGbNmpaYmBiRHF7LYuat4+SlLF47Tl7KQ5YLk5qaaqdPn7bY2FiLjY01s8hdl3opS0pKip06dcokWbly5SKaxWt5vHScvJTFa3nIkjfykCVnXjrneS2Pl46Tl7KYees4kSXv5EEuhDwvKSlJnTp1UqNGjVSpUiW98cYbkiS/3x/RXDt37tQ//vEPPfXUU/r0008jmuVMW7Zs0bBhw9S7d28NGjRIO3fulCRlZmZGdZb169erZs2aatasmcqUKaMmTZrorbfeCnsOr2XZtm2bJk+erDvvvFNPPPGE9u7dKyly7zEv5fHScfJSFslbx8lLWdavX69q1aqpdevWqlWrlipXrqxnn3027Dm8lkXy1nHyUhavHScv5SHLhUlKSlLPnj1Vv359denSRc899xxZJG3cuFGdOnVS7dq11axZM40dOzZiWbyWx0vHyUtZvJaHLHkjD1ly5qVzntfyeOk4eSmL5K3jRJa8kwe5YyqtPG7Tpk3Wpk0bq1+/vo0cOdL69u1rAwYMsLVr10a0F3LDhg3Wpk0be/nll+3ll1+2Ll262Ouvvx6xPNlt3LjRWrZsacePH7cCBQrYtm3brE+fPnb48OGwPwnrpSzbt2+3Ll26WJ8+feyTTz6xxYsXW/369W3RokWWmZkZ1mF/XsqyYcMGS0hIsG3bttmOHTtswYIFNmzYMDtx4kRE3mNeyuOl4+SlLGbeOk5eyvLjjz9a9+7drW/fvvbpp5/ap59+agMGDLD333/ffv3117AeJy9lMfPWcfJSFq8dJy/lIcuFCVwrV6xY0R544AGLj4+3OXPm2OrVq6M6y+bNm53vEFOnTrWOHTvav//9b1uwYEHYs3gtj5eOk5eyeC0PWfJGHrLkzEvnPK/l8dJx8lIWM28dJ7LknTw4j0j1yOD3O3TokDp16qRhw4YFbW/btq2GDh0qKTJPdu7YsUOXXXaZRo8erdTUVB04cEBTpkxRo0aNtGfPnoiOZNm1a5euueYajRo1ytm2ZMkSXXXVVVq6dGnUZklLS9OIESN08803Ky0tzdn+8ssvq3Tp0jp48GBUZklOTlb9+vU1ZswYZ9urr76qq666Stu3bw9bDi/m8dJx8lIWyVvHyUtZ0tPTNWnSJN144406ceKEs33hwoUqUaKEkpOTozKL5K3j5KUsXjtOXspDlgtz8OBBXXfddXrwwQedbYcOHdJll12mJ598MmqzHD58WImJiUHfIY4dO6ZmzZppxIgRYc3itTxeOk5eyuK1PGTJG3nIkjMvnfO8lsdLx8lLWSRvHSey5J08OD9GjORh6enpduTIEevTp4+Zmfn9fjMzq1Gjhh0+fNjMLOxPdqanp9srr7xi11xzjU2ePNliY2OtTJkylpCQYHv27In4fHqrV6+2EiVK2MCBA52nF6+77jrz+/2WlJQUtVn8fr9VqVLFOnbsaAULFnTytGzZ0ooWLWrp6elhy5KRkeGZLEuXLrWqVavafffd57y/brnlFjty5Iht2LAhbDnMsuai9FKe31IzcumJ4d9SM25lMfNO3XitZmJiYuzKK6+0du3aWZEiRZztzZo1s2LFitnx48fP+jtuHSdJnsliRs3kxks1E/jdXsnjpbbxUrucaefOnVa+fHnr3bu3mWV9XpQqVcq6dOlihw4dMrP/Xj+7nctLWQ4fPmxly5Z11oDJzMy0YsWKWffu3W3fvn3OtnBk8VoeLx0nL2XxWh6y5I08ZMmZl855XsvjpePkpSxm3jpOZMk7eXB++SMdAL9d+fLl7Y033rDatWubWdabKyYmxipXrmw7d+4M2jclJcWKFi3qap7MzEwrUKCANWjQwAoVKmSFCxd2ftasWTMrUKCAHTx40CpWrOhqjnOpWbOm3XXXXXbFFVeYmTmLnRcrVizHm6duLjR7+eWX28CBAz2RpVChQtajRw+rUaNG0PYSJUpYgQIFgvKsWbPGGjVqFPIMR44csRIlSliRIkWsd+/eVq1atYhlCahQoYL16dPHLrvsMjPLqnGfz2exsbGWmpp61v5uHiOfz2cVK1a0m266yRN5fkvNhLpT9PfUjJsdtF6pG6/VTExMjCUmJlrp0qXN7L8Lz8XFxVn+/Pnt9OnTzr7Lli2zhISEkB+nAwcOWNmyZa1AgQL2hz/8wUqWLBmxLNlRMznzQs2YebNuvNA2XmyXM1WuXNl69uxprVu3NjOzfPnyORn3799vZhZUv27kCrRHlSpVIp4loFSpUta/f3/r1KlT0Ov6/X779ddfw5YlcP4oU6aMJ/KYUTPnQtvkzAvtEng92uZsXmwXzsG5o2Zy54W68WLNeKFdAq/ntbbBhWHESB4X6BTx+/1WoEABMws+UZuZPfbYY/biiy9aRkaGaznWrl1rPXr0sFOnTln37t1t3LhxThYzs/z5s/rgst+g/Pbbb13Lk5u6deta//79zSyrzQK5SpQoEfTFffr06bZz586Q3+z54YcfbOXKlU6Wfv36RSzLnj17bMWKFbZ48WLz+/3ODe7ATTAzs6NHjzonbzOzSZMmWfv27Z0nJEJl7dq11r17d1u7dq2ZmXODO/sIo3Blya5t27Y2cOBAM8s6Rvny5bPY2FgrW7ZsUM/+Sy+9ZLt373bl5uDPP/9smzdvdvLcddddEcvze2smlE9D/N6acfPJjEjXjZdqJjk52T755BP75z//ab/++qsVK1bMzP5bM36/344ePWonTpxwzoETJkywVq1a2f79+0NeMy1btrT//Oc/ZmbOTVwzC3uWM1Ez/+WlmjHzVt14qW281C5nSktLc/5dvnx569u3r5kFf1Zl38/M7IknnrCpU6eGPMuWLVvs9ddft9OnT1u5cuWcLGeOoA5HllOnTpnf77fU1FQrWbKk84X9zHYJfF/w+Xw2ceJEGzx4cMizmGXN2/7oo49aamqqxcfHO3nObJtw5KFmckfb5MxL7WJG2+TGS+3COTh31EzuvFQ3XqoZL7WLmbfaBhePjpFLRExMTNCXzMCNikmTJtn48eOtffv2zhfTUFu3bp21bNnS6tWrZ4ULF7ZChQqZ2X9PSunp6ZaSkmKZmZnOFAvjxo2zhIQEO3DggCuZArZu3WqjR4+2AQMG2MyZM+2HH37Icb/MzExnONukSZNs9OjRdvTo0ZBmWbt2rV177bXOjdwASUE3lsKRZf369ZaQkGD9+/e3vn37Wv369W3u3Ll2+PBhy5cvn1NLPp/PYmJirGjRojZ16lSbMWOGffrpp84TqqGwbt06a9asmSUkJNg111wT9LPsNR2OLD/88IM9/vjjNnbsWHvzzTft5MmTQa8fkJmZ6XyoTZw40e699147duxYyHIErFmzxpo0aeJMrRbIkFPNuJ0nFDUTqqchQlEzoXwyw0t147WaadasmY0cOdKGDBli11xzjU2fPt1++eWXs2rG5/NZ0aJFbdq0afb000/bihUrrFy5ciGtmRYtWlivXr2cp74Csg+BD0cWM2omN16qGTNv1Y2X2sZL7XKmpKQk++Mf/2gdO3a0G2+80ZYuXercvMiXL5+Tr0yZMk7H0rhx42zSpEnWvXv3kGZZt26d1a1b144ePWoFCxY0s/+2T/b//3Bk2bhxo3Xv3t1atWplTZo0sTfeeMN27dplZhZUP6VKlbLY2Fgny4wZM2zAgAEhzWKW1TYNGjSwggULOt8b/H7/WTcQwpGHmskdbZMzL7WLGW2TGy+1C+fg3FEzufNS3XipZrzULmbeahv8RmetOoI8KzMzU5I0efJkDRo0SNOnT1dsbKxWrVrl2muuW7dOcXFxevjhh4O2Z18A2e/368CBA6pUqZJ27NihRx55REWLFtWKFStcyyVJSUlJio+PV+fOndW7d2/Fx8erQ4cOeumll87KmZCQoOeff15PP/20K222du1aFSlS5JyLLZ0+fTosWfbv3686depo3Lhx2r59u3bt2qVbbrlFdevW1eTJk7V//35n33379qlRo0a65ZZbVLBgQX333XchzbJx40YVLlxYkyZNkpRVK4cOHdKOHTvO2jccWUqUKKHrrrtObdq0Uf78+dW7d28tXrzY2Sc9PV1paWm64oor9Pbbb+upp55y7T22du1axcXFafjw4bnuk5GREZY81My583ilbrxUM4cPH1bjxo01atQo7du3T5mZmfrTn/6k5s2b6/bbb9dPP/3k7Hvq1CldffXVSkxMVMGCBbVy5cqQZklKSlKhQoX05z//WVJWzfzyyy9au3btWfu6nUWiZnLjpZqRvFU3XmobL7XLmbZu3arixYtr0KBBevjhh9WnTx/5fD5NnjxZO3fuDNr34Ycf1pAhQ/TII4+oUKFCIf98yO362O/3S8p6X4Ury/bt21WyZEkNHjxYf/vb3zR06FCVLFlSgwYNOuu1nnrqKd10002aMmWKYmNjXfncPF/bhDMPNZM72iZnXmoXibbJjZfahXNw7qiZ3HmpbrxUM15qF8lbbYPfjo6RS9DUqVPl8/kUHx/v6pfQPXv2qEKFCkpMTJSU9WHx0EMPqWvXrqpTp47++te/6vvvv5ckpaam6qqrrlKHDh1cu0GZXVpamvr166d77rnH2bZt2zbdcsstatGihZ5++umg/W+44QaVKFFCcXFxIe+w2bp1q2JjYzV+/HhJWR0gCxYs0IsvvqgPPvhAKSkpYcsiZd3UqF69+lnHYPTo0WrQoIGefPJJnThxQpK0adMm+Xw+FS5cWGvWrAlpjoMHD6pWrVpq1KiRs23AgAG69tprVbFiRbVp00Zr1qxxPlTczHLy5El169ZNgwcPdratWrVKTZo0UYcOHfTuu+8G7X/99derVq1aKlKkiCvvsc2bN6tIkSIaN26cpKybpEuWLNF7772npUuXnrW/23momZx5qW68VjM7d+7UZZddpn//+99B2//2t78pISFBDzzwgA4cOCBJSk5Ols/nU8GCBbVu3bqQ5jhy5IhatmypqlWrOtv69u2rBg0aKC4uTvXq1dM777zj1K+bWSRq5ly8UjOS9+rGK23jtXY504QJE9SpU6egbbNmzVLp0qU1evRo7d2719k+fPhw+Xw+xcXFhfyadMuWLSpWrJgGDRokKevBpeeff14PP/ywHn74YW3bti1ofzezSNKMGTPUpk2boG1z5sxRw4YNdfvtt2vDhg3O9kcffVQ+n0/FihVzJcuOHTtUsmRJ3XrrrZKy2ubxxx/X3XffrZtvvllLly51HvQKRx5qJne0Tc680i4SbZMbr7UL5+DcUTO580rdeK1mvNIukvfaBr8dU2ldghITE83M7JtvvrEmTZq4+loJCQl26NAh++CDD6xbt262YcMGq1OnjrVv395mzZpl06dPt59++skOHDhgSUlJ9p///MdWrlxp1157rau5ChYsaPv27QuaEqRWrVr25JNPWp06deztt9+2Dz/80Nm/cOHClpqaasuXL7emTZuGLEdGRoY988wzVrRoUWfKnx49etiECRNs2rRp1rNnTxswYICtWbPG9SwB6enplpGR4UzdcurUKTMze/zxx+3666+35557zplyrGTJkvbAAw/Y6tWrz5qy6PcqXbq0de7c2eLi4uzPf/6zNWvWzPbs2WP33nuvPfvss5aenm49evSw7du3u56lcOHCdvjwYStTpoyZZQ19bNy4sf3zn/+0jIwMe/HFF23dunXOz/x+v+3Zs8eWL18e8vdYenq6jRs3zuLi4uyGG24wM7NevXrZgw8+aPfdd5+1b9/ehgwZ4qwj5HYes6w5VL1SM506dfJEzZh5o24k2enTpz1XMzExMVakSBHbvXu3mf13PtUhQ4ZYr1697IsvvrCvv/7azLKGFU+bNs3WrVtnDRs2DGmO+Ph469Gjh9WuXdvuuOMOa9KkiR0/ftwmTpxoX3/9tV155ZU2YsQI++abb1zPYpZVM4cOHYr4uSYzM9PGjRtnRYoUoWZy4LW68fl8Vrhw4Yi3TXx8vN14441Wq1YtT7TLmQKfTWb/baOhQ4fao48+as8884y99957zs+rV69uNWvWtG+//Tbk16QrVqywlJQUq1Onjv3000/Wrl07mzNnji1dutSWLFliV111lS1cuDAsWQKOHTtmKSkpzpQgt956q02cONGWLVtm8+bNc6ZwrVevnjVo0MCWLVvmSpakpCSLi4uzsmXL2qpVq6xDhw728ccf2549e+zYsWN23XXX2XPPPefs73YeaiZ3tE3OvNIuZrRNbrzWLmacg3PjlZpZvny552rGzBt147WaMfNGu5h5s23wG0W6ZwbuOHMUglt2796t22+/XYULF1bHjh118OBB52dz5sxRiRIl9NFHH0mSZs6cqaSkJNczZWRk6PTp0xowYID69Omj1NRU+f1+p7d2+/btSkhI0C233OL8nf/85z9nDdcMla1bt2rQoEFq0aKFqlatqi5dumjz5s06efKkvvvuO1WuXFm33367s/9XX33lWpaApk2b6vrrr3f+nJqa6vx3kyZN1LdvX+fPp06dCvnrZ+85HzFihMqXL6+uXbsGPRUiSfXr19cdd9zhahZJOn78uK6//nrdd999krJqKD09XVLWaIkqVarowQcflJQ1LHLevHk5Tt0UKqtWrVJiYqI6deqkOnXqqHPnzlq9erV27typhQsXqmDBgho7dqyreXbv3h30fm3SpEnEamb37t1BTxsPHz48ojUTqN9jx47p+uuv1/333y8pMnUTGNb93XffKTExUYmJiRGrmRMnTgRNo3jDDTeoUaNGOnLkiCQ5bSNJf/jDH9S2bVvnz4GpBEOZ5eTJk86fZ82apXr16qlTp07atWtX0L6tW7cOelot1FmkrCfnV65cqYyMjIjXTHJysn788Udt2rQp4jVzpm7dukWsZnIyc+bMiNVNZmZm0GflTTfdpAYNGkSkbTIzM4N+5wsvvKArrrgiYu+n3Dz99NMqVqyYkyn7+WjKlCkqWrSoc331yy+/KDk52bUsM2fOVKVKlVStWjXdcMMNSk5OVmpqqk6dOqX77rtPJUqU0C+//BKWLPPnz1fhwoW1evVqScHt8txzz6lgwYLauHGjpKyRmfv27XMtiyS9+eabzkjPwOd4oE7+8pe/qFChQtq8eXNY8syaNcszNfP00097pmYCebzSNl56P3mpZiRv1Y2X2sZL7cI5OFj2+1SRrpnjx487/+2lmpGkuXPneqZu3njjDc98bs+bN88z7SJF/v2E0KBjBL/brl27NHbsWH322WeSgufTq1WrljPfXvZ5Gd1w5u9fsmSJ8uXLFzRtVmCfJUuWKCYmJmionZtZfvjhB/Xv319du3Z1phcLWLBggXw+31nbQyUlJUXHjh3T0aNHnW2rV69WuXLl9Mc//tHZFrjJMmLECHXv3j1sWaSsIZHvvPPOWXN49u7dW3369HEly6FDh7R582Zt2bJFkvThhx/K5/PpnXfekRR8I+jNN99UyZIl9eOPP7qSJZBn06ZNTh1s3rxZrVq1UseOHc963WeeeUZlypRxrQPtl19+UenSpdWzZ08tW7ZMkrRmzRqVKVMm7DWTUxZJevLJJ8NeM1JWO3Tr1s25qH/rrbciVjdr1qxR165dnYv6tWvXRqxmNmzYoK5du+rLL7902ubAgQOqUaOGOnbsGHTRKmXd5GjdunXQzV03sgSm9JGk1157TQsWLHBuNgdee9iwYWrfvn3IcwRs3LhRVatWddbxmDt3bsRqZuPGjapSpYoeeughSdLKlSsjVjPJycmaP3++3nnnHefLTaRqJrc8UmTqJikpSf3799f111+vAQMG6F//+pf279+vq6++Wtdff31Y2yZ7lrvuukvvv/++JOm9997TO++8E/b307mkpaWpTZs2atGihfOgTqBzfM+ePapatarzvguHmTNnqnnz5mdNl7Bp0yaVLl1aCxYscPX1s1+P9+zZU1WrVnW+kGd/uKFWrVqaNWuWq1mk4GvjuXPn6oYbbgj6XJeypmsrW7asXnjhBdfzSFnTG7Zt29YzNTNr1qyI1Yzf7w86RqmpqRFrmzOzSJFrm0OHDgWtpXfixImI1syZeaSsaRUj0Tbbtm0LmvY5ku+nM7NIkW2Xd999N+g8G8lzcCBP9geGInUO/v7779WvXz/n2jIlJSViNRPIkn2dtkjVjJR1bjl8+HDQcbrxxhsjUjeBLNk7sebMmeOJz20p6+G7SF/TZPfGG294pm3w29AxgpA4evToWQuuHzx4UAkJCfrnP//p+utv2bJFM2bM0O7du4O2z5gxQzExMUELrktZT+TXrVvXlZtPuWXZuXOnFi1a5NwAC3xhffvtt1WnTh39+uuvIc+SlJSkTp06qVGjRqpUqZLeeOMNSVkXHHPnzlWZMmXUp08fnT592rm50a9fP/Xt21fp6ek5LhoVyizZv/SceaPH7/erT58+QYtsh8qGDRvUqFEjNWjQQAUKFNCUKVOUmpqqoUOHKjY2Vh9++GHQ/v/6179Ut27doBFRoXRmnsCitt9//73efvvts2rmmWeeUYMGDVwbQfPFF18of/78ateunW6//XbnJuG8efNUsmRJ9ejRIyw1k1OW5cuXOz/LfuEouVszUlbHQ+HChTV69GhnW3p6uoYMGaLY2NizLpbdrJszs2RfV+Xtt9923k/hqJnAYuL33nuvfv7556CfLVu2TJUqVdJ1112nrVu3Oq8/cOBAdenS5az3vZtZpOAL54DbbrtNQ4cOld/vd6VmihQpoho1aqh8+fLas2ePJDnnmsCIygC3ayZ7lsBnVOA8E7ixHY6aWb9+vS677DI1adJE5cuXV/fu3Z1O6mXLlqlKlSphq5nc8mR/WCGn13SrbjZv3qySJUtq4MCBeuqpp5SYmKiaNWvqwQcf1Ndff6369eurVatWYWmbnLLUqFFDf/rTn3L9O26+n7LbsmWLRo0apTvvvFMzZ87U1q1bJUmfffaZmjVrpvbt2+vQoUPO/ocPH1adOnXO+nx3I8umTZucn61atcr5rAq0x7p161S3bl1X1urZt29f0PVk4HN648aNatWqlWrUqBH0lOuJEyfUqFEj167Vc8sjZX1eBWo40DY//PCDGjZs6DxsFUo7duzQ//7v/2rEiBGaN2+e87offvihEhISwlozOWUJWLt2bVhrRsqq4QcffFBdu3bVlClTnM+gjz76KOxtc2aW7E/Xhrtttm/frpo1a2rixIlBo+M++ugjtWzZMqztcq48UvjbZs2aNSpevLhefPHFoO2RqJkzs2Q/z4S7XdatW6eyZcvqnnvu0a5du5zX3LhxoxISEsJ+Ds4tj5T13Tyc5+DAdxefz6dXXnnFed2FCxeGvWZyypL9Z+E+B2/cuFHdunVT3bp11aNHD+c7ZSQ+u8/M8sEHHzg/C/fn9vfff68xY8aoX79+mj59ulatWuW8ZvPmzcP+fjozT/YOtPXr14e1bRBadIzANZMmTVLt2rWDeuHdsG3bNpUqVUo+n09jx451FiCVsk6OU6ZMkc/n04QJE7R69WodOnRIY8aMUa1atc564sbNLFLON2pHjhypxMTEs0ZR/F5JSUkqXbq0hg8frjlz5mjEiBEqUKCAc5P7xIkTWrBggapUqaI6deqoR48euvnmmxUXFxfykTS5ZcltQez09HRNmDBBFStWPGuxs1BlGTlypJKSkjRjxgz5fD7t2rVLu3bt0j333KMCBQroueee0549e3Tq1CmNGTNGV199tQ4fPhzSLOfKE3jfZL+4D3jwwQfVu3fvoKfhQ+nQoUO64YYb9MILL6hx48a69dZbnZtO77//vurVq6crr7zS1ZrJLcttt92m9evXSwpuGzdrRsq6II6Li3NGwAVkZGTo4MGDGjx4cNjqJrcs57qB7VbNpKSkqFOnTs7UUFLWzdQ1a9Y4F6obN25UvXr1VLt2bTVr1kw33nijihYtGvLFmM+VJafPoVOnTmn8+PEqV66cKyP2Al+6xo0bpwMHDqhevXqaOnWqpKybYoMGDVKBAgX0wgsvuF4zZ2apX7++HnnkEadzOqfPJrdq5qefflLlypU1ZswYpaSk6F//+pcqVKigb7/91tknXDVzoXmyc7NuUlNTddttt2nYsGFBr3fNNdfI5/Ppj3/8o9avX6/mzZurZs2arrZNblkaNWokn8/nLDSZ/Wduvp+yS0pKUnx8vDp37qzevXsrPj5e7dq10+uvvy4pawRos2bNVKNGDX388cf6/PPPNWHCBFWoUCHkI6ByytKhQwc9//zzuf6d0aNHq0mTJiG/Bt20aZMKFiyoPn365HhNuWLFCrVt21YlSpTQCy+8oLlz52rMmDEqXbq0tm/fHtIs58qT03VNwPjx49WwYcOzHi76vdavX68qVaqoffv2atmypWJiYvT4449Lyvoc/7//+z/npqXbNZNTlieffPKcf8etmgnkKVeunPr06aN7771XBQsWdB4wycjI0Pz5850bUOFomzOzBB4Wyo2bbfP888/L5/OpUaNGevTRR53OiIyMDM2bNy9s55nc8gQetsiNW20TeNBixIgRZ/0sIyNDb731Vthq5lxZcuNWu+zcuVPVqlU76/o8YP369WrdunXYzsHny5MTt87BgevQUaNGaeTIkWrdurXzfsrMzAzrOTinLHv27DnnwxxunmeSkpJUsmRJDR48WM8//7xatWrlzNDg9/u1cuVKtWnTJix1k1OWW2+99Zxt41bNJCUlqUSJErrpppt03333qWrVqrrmmmucDtANGzaE9f2UU57GjRvrmWeeyfXvuNU2CD06RhByc+fO1aBBg1SyZMmg6SjckJKSorvuukt33nmnZs+eLZ/Pp4cffjjoQyszM1OvvfaaKlSooMqVK6tOnTqqVKmS0+PsdpbsnSPZP1Q2btyo8ePHq3jx4s6N3lA5dOiQOnXqFHRDQ5Latm2roUOHBm07duyYRo0apbvvvltDhgwJ+TowF5Ile7t88skn6t69uypUqBDy+jlw4IDatGnjzOEfeO3ExEQtX75c69ev14oVK/Tss8+qYMGCqlGjhho2bKiyZcu6Usu55encubO+/vprZ77/gB9++EETJ05UiRIlnLkzQy0jI0P79+/XFVdcoV9++UXvvvuumjZtqoEDB+q6667TzTffrGPHjmnkyJGu1cz5stxzzz1q2bKlevfuLUlavHixazUjZQ3lrlChghITE51cDz30kP7whz+oXr16+tvf/qYvvvhCs2bNcr1ucsvStWtX1alTR3/961+Dnlbevn27qzWTmpqq//mf/9Hq1auVkZGhxMRENW3aVEWLFlXz5s3197//3dl31qxZGjNmjCZPnuzKjdPcshQrVkwtWrQIyvLRRx+pffv2qly5sis1s27dOsXGxmrcuHGSsj6H+vTpo2uvvdbZZ/fu3Zo2bZoKFiyomjVrulYzuWVp2rSps0/2G5Vu18wLL7ygtm3bBp33u3TpohdeeEGvvvqqvvjiC2e72zVzvjyvvfaaPv/8c2e723UjSe3bt3duBAY6O0eNGqVevXrp2muv1ezZsyVlTffgdtvklqV3795q3Lixpk+fLklauHChOnTo4Gq7BKSlpalfv3665557nG3btm3TLbfcoqZNmzrTFWzatEl//OMfVbZsWV1xxRWqX79+yK/7zpWlRYsWQVO5StLXX3+tYcOGqUSJElq7dm1Is+zdu1ctW7ZUu3btVKZMGd100005do4cPnxYI0aMUN26dXXllVeqefPmrhyzC80TsHjxYg0ePFglS5bM9aGZ3+qnn35SrVq1NGrUKOdc9/LLL6t8+fLOe8fv92vt2rW67bbbXK2Zc2UJPICSnZs1I2V10levXt1ZT0qS/vznP+uBBx4IGmG5adMm9e3b19W2OVeWnNYqcrttpKzPzzvuuENTp05VpUqV9Je//CVoROfWrVt16623utou58uT04wDbrbN1q1bFRsbq/Hjx0vKWkdqwYIFevHFF/Xuu+86o083btzo+jn4XFk++OCDoPUjJPdr5sMPP1SXLl2cLOPHj1ePHj1011136c0335SUda06bNgw18/B58pz991367XXXgva181z8HfffafixYs716Fz585VfHy8vvrqK2efcJ2Dz5flzI57t2vm5MmT6tGjR9C9gA8++EA9e/bUnj17nPNwOOrmXFn27dsX9H7y+/2u1szx48eVmJioUaNGOdsC02uXLVtWTzzxhLPfQw895Pr76Vx5ypcv7zz4FuBm28AddIwg5NatW6euXbu6duM2u5MnT2r27NnOMPT58+fn2DkiST/++KO+/PJLLVq0yFk4K1xZzhw58uOPP6pz586qWbOmKyfLvXv3qlmzZlq6dKmk/37IDxgwQLfddpskBS1IH3Cup/jczBLg9/u1bds2jR492lmkKpQOHjyoadOmBX35fOSRR+Tz+dSwYUNVq1ZNnTt3dtb6mD9/vubNm+faqKdz5bnmmmtUtWpVJSYm6quvvtIPP/ygG2+8UdWrV3f1AzZwc/C2227T4sWLJWXd9CpTpoyKFi0adHNZcqdmLiRLsWLFnKHP27Zt06hRo1ypGSmrM6Jnz55q0qSJ3n//fXXu3Fnt27fXn/70Jz3wwAO6/PLLdffddyslJUXr1q1ztW7OlWXw4MGqUaOGBg4cqJ07dyopKcn1mtm7d6/Kli2rTz75RMOHD1diYqLWrVunRYsW6eGHH1aFChWcL4Nuu5Asb731lqSsEXOPPvqoazeUV6xYoYkTJ0r673vk+++/V3x8/FlPFrldM+fK8uyzzwbtG46aef7551WzZk3ni8vUqVPl8/nUoUMHNWnSROXKlTtrag43nStP06ZNVa5cOedc42bd+P1+nThxQq1bt1b//v2dm0u//PKLLrvsMv3jH/9Qv3791Lp165C/9m/Ncv3110ty//10po4dO2rQoEFOVinrydg777xTrVq10r/+9S9n382bN2vXrl1nXYeFI0vr1q2d6TCSk5M1depUNW7c2JWRT4sWLdKtt96qlStX6ttvv1WpUqXO2Rnxyy+/6Ndff3VlGteLzXP8+HHNnDlTLVq0CPmDQpmZmXr88cfVuXNnHTlyxNkeGLWRU826VTMXm+WXX35xtWYyMjI0ffp03X///UHH5e6771ZCQoKaNm2qQYMGheX9dCFZ7rvvPuf9tHv3blfbJmDt2rWqXbu2/H6/pkyZoqpVq2rmzJm68cYbnc9Vyf3zzPny9OzZ0+lQcvNck56ermHDhql06dLO9VSXLl3UsGFDVa9eXTExMerVq1fQ+9ittrmQLDfddJPz2e72OVjKWiy8RYsWkqQOHTqobdu2evDBB9WxY0ddffXVzs14yf1z8PnyXHPNNU7NnDx5Uk8//bQr5+CUlBTFxcU56+wFtG/fXu3atctxbTS3auZis7h9DpayPhdat26tKVOmONtGjhyp6tWrq3Llymrbtm1QZ7GbdXO+LO3atdOYMWMkZT0Y4tbntpR1Xdm0aVPnO2Rg9PpNN92k9u3bq0WLFlq0aJGz/65du1x9P50vT8uWLZ3PymPHjrn2foJ76BiBK9yYAzw32ReFkrLWQfD5fBo5cqTzgZqenu7asOYLzRJ4wijwFPyPP/7oaqbsN9sDT1pNmDBB/fv3D9ov+xcQt+YDv9AsgQ+ZMxdcDKVjx445/x1YBHn+/Pk6dOiQlixZoiZNmjhTCITDufJ8+eWXatq0qaZMmaLTp0/r888/d3UB+Oxuv/125+Jn4MCBKlmypOrVq6e77roraGExN+eQv5AsgYUW3awZKetL+O23367ChQurY8eOQU8MvvHGG4qPj3dtTumLyTJnzhyVKFHCuVj84osvXK0Zv9+vvn37asiQIerWrZvTgSVlfQnt16+f7rvvPqWnpzs35d2qmQvJcu+99+b45Knb/H6/jhw54kw/F2gPNzsWLzRLRkaGkyMtLc31mtmxY4datmypWrVqqXfv3vL5fHr//ffl9/u1b98+DRs2TG3bttWBAwdcr5mLyePG9Ak5+eqrrxQTE6M2bdqof//+iouL09133y0pa9qAYsWKafPmzeecBi1cWYoWLRo0Qs1tGRkZOn36tAYMGKA+ffooNTU16CGP7du3KyEhQTfffLPzd9xqnwvNcssttzg59u7d69paZfv37w8abbVs2TKnMyL7TficbkJFMk+A3+93ZbpSSfryyy+da4iAzMxMVa9ePShjOFxslv3797t6sz05OTnomu4vf/mL8uXLp/Hjx2vWrFlq2rSp2rVr50x54+b55kKzBM7Fbr6fsuvUqZPzmfjkk08qLi5O8fHxQdcY4fwszy3Pxx9/LCnrGO3Zs8e1ttm6dasGDRqkFi1aqGrVqurSpYs2b96skydP6rvvvlPlypWDvt+5WTMXkuX22293crhdM59++qnatWunv//97+rYsaPzIOaRI0ecToqcpgOOZJ7AZ3hqaqprN5WzX1MGrl1eeuklXXHFFc6IkMzMTKdW3KyZC80S4GbNZGZm6ujRo0pMTFTPnj01e/ZsjR07VoULF9Yrr7yiRYsWacqUKWrcuLHefffds7JFKkugg9qtmglcf1eqVMkZmSxlfUbUq1dPr732mho2bOhcjwb+jlt+S560tDRXOz0RenSM4JKRkZHhnBQDN5gffvhh7dq1S8OHD1evXr2UkpISlhu558vSo0cP1xbOPlP2D9Dx48c7U/BI0rRp0/TUU0+F7Yvy+bLMmDEjbFmkrCkNzhyi27VrV3Xr1i1sGS4kT/fu3cOWIVC3r776qiZPnqz7779fFStW1I4dO/Tuu+/q8ssv13333ZfjItaRyHLvvfeG7b20a9cujR071llALfu5pFatWho5cmRYclxIlouZT/j3WrlypeLi4uTz+c5agP5Pf/qT2rRpE5bzrtey5OSdd96Rz+cLmj4gGrPs2LFD8+fP1+TJk9WnT5+gnz3++OO6+uqrw/a+9mKeFStWqF+/frr77rudqbOkrCkN6tatm+ON5Us5y5kd30uWLFG+fPmCpqoK7LNkyRLFxMS4Ot3kxWZxaw2u3B4ICFxrLV++PGikxunTp/Xss8/qk08+8Uye2bNnu5IntyyB839mZqZq1KgR9Nr//ve/XekA/S1ZPvnkE9c6RHLLc/DgQT300ENBT+Fu2rRJPp8vaFuks2QfwRKOLG3btnWmHRo4cKCKFy+uChUq6MknnzxrAfRI53FjRoScsvzwww/q37+/unbtetZIpwULFsjn82nLli2eyeLWaMYzs2zevFmVKlVSvXr11KFDh6Cf/fzzzypSpIiro6h/S545c+a4niWn6+7jx4+ratWqGjx4sCuv/3uzuPld4czjtHz5cnXu3Fm33nqrrrzySr388svOz/bu3atq1arpsccei7oszzzzjHw+n+666y5NmDBBRYsWdaYufeutt1S9enUdPHjQtc4ir+WBu+gYwSUl+9N68+bNU4ECBXTllVcqf/78YZ/f71xZ3J6DO6csUlZnxB/+8AdJ0sSJE+Xz+VyblzcvZMkuMzNTp06d0i233KJHH300Yjm8kufLL7+Uz+dThQoV9N133znb33vvPe3YsSNqsxw9ejRoRJzf79fBgweVkJDg2peL35LljTfeCGuWpUuXyufzqVu3bkE3JIcNG6a77747rKM0vJTlTGlpaerUqZNuu+02nTx5MmI5vJLlpZdeUteuXYPqePjw4brxxhvPGoEZbXly+lI+cuRItW3b9pxrNVxqWbZs2aIZM2actXDljBkzFBMTo5deeilo+6pVq1S3bl1XRj3lhSxnCkxjdfPNN2vAgAEqUKCAfvjhh0s6T05Zstdwenq6UlJSVKtWLS1fvlySNHbsWPl8vpDf6PZSltzyZBcYuR34DrN+/Xo1btzYlelAvJ4lcK0wevRo/fOf/9TQoUNVqVIl7dixQ9OmTVORIkX01FNPuTJi2Ut5cjtOO3fu1KJFi5xcgbp+++23VadOHVeels4LWT766CPlz59f5cqV0zfffONsT0tLU7t27YJGGl2qec733g7U6OzZs3X55ZcHfbe7lLOcK09KSooyMjKUkJCg+fPnO9tPnz6tjh07Og+mhLLDxutZMjMz9eqrr6pp06bq3Lmzs66IlLXOXqNGjVzrwPJaHriPjhFccvx+v3NSateunUqVKhWx+f28kiXQQTN58mQNGjRI06dPV2xsrKsLBOaFLGeaOHGiqlWrluMCmJEQyTynT5/Wyy+/7MypGskPei9lycmkSZNUu3Zt19aiyStZvvzyS1WqVEnNmjXTwIED1b9/f8XHx7v2tHReyXKmxx57TMWLF9eePXsiHSXiWZKSkhQfH68nn3xSr7/+ukaNGqUSJUpE7DPba3kC1q9frwceeEDFixeP6AME4c6ybds2lSpVSj6fT2PHjg16gv7EiROaMmWKfD6fJkyYoNWrV+vQoUMaM2aMatWqFfIn//NKlpx89dVX8vl8KlWqlCvXWl7KcyFZAg+eBG6CPfLII4qLi3Om5rwUs5wvT25T2IwbN07NmzcPaw17KYsk/eMf/5DP51PFihW1cuVKZ/sTTzzhyvW5l/KcL0tuneaJiYkh7zTPS1nmzp2rmJgYJSYmau7cudq2bZvGjBmjSpUq6eeffw5pFq/luZjPg8B0Z9lHo16qWc6XJzMzUykpKWrevLkmTpyoX3/9VcePH9fEiROd2RKiMYsknTp16qyZKoYMGaI+ffro1KlTIb8v4LU8CA86RnBJysjI0PDhw+Xz+VxdlC+vZQksKhsfHx90MR3tWf7v//5PgwcPVunSpcM+msfLebw0FNRLWQLmzp2rQYMGqWTJkhGvG69k+f777zVhwgR16NBB999/f0Q7IryURfrvl/bDhw/r2muvDdt6QV7P8vnnn+vyyy9X7dq11bZt24h/TnotT2pqqt5991317ds3qrKkpKTorrvu0p133qnZs2c7U5JmvymamZmp1157TRUqVFDlypVVp04dVapUKeQ32/NCltxu+KSlpem+++5TsWLFlJSUFNIsXstzsVkaNWqkpk2bqmDBgiG/DvVSlt+SJykpSRMmTFDx4sVD/l7Pa1m2bNmiCRMmODMPuHk96qU8F5Il+w3AjRs3avz48SpevLgrC3jnpSxS1tR8CQkJKl++vOrUqaMrrrjCletzL+W52Pe2JN1xxx268sordfr06ZDeUPZSlovJM3/+fPl8Pl1xxRVq3ry5LrvssogdJ69kyX4sNm/erIceekjFihVz5aElr+VB+NAxgktSRkaG/v73v4d9+iyvZ1m5cqV8Pp8rX47zcpaNGzfq5ptvDusisufitTzI2bp169S1a1fX5rLPq1kkRWxh8Zx4KYuUdUEdiWmicuKVLIcOHdLevXs9s1Ch1/KkpqZ64jhJ4cty8uRJzZ49W/PmzZP03y/oZ3ZISFmLqX755ZdatGiRK3Ps55UsOd3wWbFiherXr+/KCASv5bnQLBkZGTp06JDi4+OVL18+V25meCnLxeSRsqYl6tmzp+rWrevKqLC8mCUwrZfk7qhlL+W5mOP0448/qnPnzqpZs6Yr33fzapaDBw9q69atWrNmjWtrBnkpz8VkCdTt8uXLXZkW2UtZLjbPV199palTp+r555935cGlvJrl2LFjmjVrlq677jrX7qt5LQ/Ch44RXLK8NIzNS1m8cnNF8laWSK47kBOv5UHOsq9FEGleygIAv9eZ1wjz5s2Tz+fTyJEjnS+o6enp2rlzJ1n+f5aDBw9KyuoQDkyRcvjw4ajJcyFZ0tPTdeDAAS1evNjVhwm8lOVC82RkZGjfvn1KTk5WcnJy1GcJdHxmZmaGbU07L+W50OO0f/9+/fjjj66e//JalvT09LCNxvVSngv9PNi+fXtUZTlfnsB1xOnTp13rRMuLWc78PEhPT/fENU048yA86BgBAAAA4EkZGRnOAyZz5851nt7btWuXhg8frl69eiklJSUsD6HkpSw9evTQyZMnXc/hxTzny9KzZ8+gp+6jJcuF5OnRo4dOnTpFlhze2146TuHMk5eOk5eyhPPzwGt5LrR+oy3LheTp2bOnZ46Tl7JE8zUN3EfHCAAAAADP8vv9zpR48+bNU4ECBXTllVcqf/78YZ/CIK9kicR6U17Kk1uWfPnyeeY4RSLLufJ46Th5LYvXjpNXathrx8lLWagZsuSFPHklS7Rf08BdPkkyAAAAAPCowFcWn89n7du3t7Vr19qSJUusQYMGZPFIFq/lIUveyEOWvJGHLN7P4rU8ZMkbeciSd/LAJeHshQEAAACA3yIjI0PDhw+Xz+fTunXryOLBLF7LQ5a8kYcseSMPWbyfxWt5yJI38pAl7+RB6MVEumMGAAAAAC5E/fr1bfXq1dawYcNIRyHLOXgpD1ly56U8ZMmdl/KQxftZzLyVhyy581IesuTOa3kQWkylBQAAACBPkGQ+ny/SMcyMLOfipTxkyZ2X8pAld17KQ5aceSmLmbfykCV3XspDltx5LQ9Ci44RAAAAAAAAAAAQNZhKCwAAAAAAAAAARA06RgAAAAAAAAAAQNSgYwQAAAAAAAAAAEQNOkYAAAAAAAAAAEDUoGMEAAAAAAAAAABEDTpGAAAAAAAAAABA1KBjBAAAAAAAAAAARA06RgAAAAAAAAAAQNSgYwQAAAAAAAAAAEQNOkYAAAAAAAAAAEDU+H9rkceZIwi2XQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cutoff_bin_ch0 = noise_peak_cutoff_ch0 // bin_width\n", "cutoff_bin_ch1 = noise_peak_cutoff_ch1 // bin_width\n", "\n", "cutoff_hist0 = hist0.copy()\n", "cutoff_hist0[:cutoff_bin_ch0] = 0\n", "\n", "cutoff_hist1 = hist1.copy()\n", "cutoff_hist1[:cutoff_bin_ch1] = 0\n", "\n", "\n", "fig, axes = plt.subplots(2, 1)\n", "axes[0].bar(hist_bins, cutoff_hist0, width=bin_width, label=\"channel 0\")\n", "axes[1].bar(hist_bins, cutoff_hist1, width=bin_width, label=\"channel 1\")\n", "# axes[0].set_yscale('log')\n", "# axes[1].set_yscale('log')\n", "\n", "axes[0].set_xticks(np.arange(hist_bins.min(), hist_bins.max(), step=50))\n", "axes[1].set_xticks(np.arange(hist_bins.min(), hist_bins.max(), step=50))\n", "axes[0].tick_params(axis=\"x\", labelrotation=45)\n", "axes[1].tick_params(axis=\"x\", labelrotation=45)\n", "\n", "print(np.sum(hist0))\n", "print(np.sum(hist1))\n", "axes[0].legend()\n", "axes[1].legend()\n", "# plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 7) Finding our spectral peaks\n", "\n", "mention the two peaks of Cs137\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### A) Define a two gaussian fitting function\n", "\n", "**Add More**" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [], "source": [ "def gaussian(hist_bins, amplitude, mean, sigma):\n", " result = amplitude / (sigma * 2 * np.pi) * np.exp(-0.5) * ((hist_bins - mean) / sigma) ** 2\n", " return result\n", "\n", "\n", "def two_gaussians(\n", " hist_bins, # raw channel histogram\n", " amplitudeA,\n", " meanA,\n", " sigmaA, # fitting parameters for our first gaussian\n", " amplitudeB,\n", " meanB,\n", " sigmaB, # fitting parameters for our second gaussian\n", "):\n", " gaussianA = gaussian(hist_bins, amplitudeA, meanA, sigmaA)\n", " gaussianB = gaussian(hist_bins, amplitudeB, meanB, sigmaB)\n", " return gaussianA + gaussianB" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### A) Fit our histogram with two gaussians\n", "\n", "**Add More**" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([-1.36134454e-01, 2.69540747e+03, 1.38796595e+01, -3.08962083e+01,\n", " 1.37838597e+03, -3.41140442e+01])" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ch0_2gauss_params, ch0_2gauss_covariance = scipy.optimize.curve_fit(two_gaussians, hist_bins, hist0, maxfev=100000)\n", "ch1_2gauss_params, ch1_2gauss_covariance = scipy.optimize.curve_fit(two_gaussians, hist_bins, hist1, maxfev=100000)\n", "ch0_2gauss_params" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "ch0_gaussA_amp, ch0_gaussA_mean, ch0_gaussA_sigma = ch0_2gauss_params[\n", " 0:3\n", "] # grab the optimal parametets for one peak of ch0. amplitudeA, meanA, sigmaA\n", "ch0_gaussB_amp, ch0_gaussB_mean, ch0_gaussB_sigma = ch0_2gauss_params[\n", " 3:6\n", "] # grab the optimal parametets for the other peak of ch0. amplitudeB, meanB, sigmaB\n", "\n", "\n", "ch0_gaussA = gaussian(hist_bins, ch0_gaussA_amp, ch0_gaussA_mean, ch0_gaussA_sigma)\n", "ch0_gaussB = gaussian(hist_bins, ch0_gaussB_amp, ch0_gaussB_mean, ch0_gaussB_sigma)" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9989\n", "9819\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABkgAAAL5CAYAAAD7Uaj9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5xU9b3/8fc503Zme28sHQQREEUQjYoGBQs2vDbsJmpsUa5XJVcTjbmx3MSYmKg3v8RyE72JuTfJTcLVBFtMDHYQQXpv28tsm35+f+zssMPuwrLs7szuvp6PxzzOOd9T5nNmlgXmPd/v17AsyxIAAAAAAAAAAMAwYia6AAAAAAAAAAAAgIFGQAIAAAAAAAAAAIYdAhIAAAAAAAAAADDsEJAAAAAAAAAAAIBhh4AEAAAAAAAAAAAMOwQkAAAAAAAAAABg2CEgAQAAAAAAAAAAww4BCQAAAAAAAAAAGHYISAAAAAAAAAAAwLBDQAIAAAAAAAAAAIadXgck7777rhYuXKiSkhIZhqHf//73cfuvu+46GYYR91iwYEHcMbW1tVq8eLEyMjKUlZWlG2+8UU1NTb0tCQAAAAAAAAAAoEfsvT2xublZ06dP1w033KCLL764y2MWLFigF154Ibbtcrni9i9evFj79u3T8uXLFQwGdf311+umm27SK6+80uM6IpGI9u7dq/T0dBmG0bubAQAAAAAAAAAAQ4JlWWpsbFRJSYlMs/t+Ir0OSM4++2ydffbZBz3G5XKpqKioy33r1q3T66+/ro8++kgzZ86UJD399NM655xz9L3vfU8lJSU9qmPv3r0qKys7vOIBAAAAAAAAAMCQtmvXLo0YMaLb/b0OSHrinXfeUUFBgbKzs3XGGWfoO9/5jnJzcyVJK1asUFZWViwckaR58+bJNE198MEHuuiii7q8pt/vl9/vj21bliWp7UYzMjL68W4AAAAAAAAAAECy83q9KisrU3p6+kGP67eAZMGCBbr44os1ZswYbdmyRd/4xjd09tlna8WKFbLZbCovL1dBQUF8MXa7cnJyVF5e3u11H330UT388MOd2jMyMghIAAAAAAAAAACAJB1yWo5+C0guv/zy2PrUqVM1bdo0jRs3Tu+8846+/OUv9/q6S5cu1ZIlS2Lb7UkQAAAAAAAAAABAT3U/O0kfGzt2rPLy8rR582ZJUlFRkSorK+OOCYVCqq2t7XbeEqltXpP23iL0GgEAAAAAAAAAAL0xYAHJ7t27VVNTo+LiYknSnDlzVF9fr08++SR2zFtvvaVIJKLZs2cPVFkAAAAAAAAAAGAY6vUQW01NTbHeIJK0bds2rVq1Sjk5OcrJydHDDz+sRYsWqaioSFu2bNG9996r8ePHa/78+ZKkyZMna8GCBfrqV7+q5557TsFgULfffrsuv/xylZSUHPmdAQAAAAAAAACGpUgkokAgkOgy0E8cDodsNtsRX8ewLMvqzYnvvPOOTj/99E7t1157rZ599lldeOGFWrlyperr61VSUqKzzjpLjzzyiAoLC2PH1tbW6vbbb9cf//hHmaapRYsW6Uc/+pHS0tJ6XIfX61VmZqYaGhoYbgsAAAAAAAAAhrlAIKBt27YpEokkuhT0o6ysLBUVFXU5EXtPc4NeByTJgoAEAAAAAAAAACBJlmVp586dCgaDKikpkWkO2CwTGCCWZamlpUWVlZXKysqKTevRUU9zg14PsQUAAAAAAAAAQDIJhUJqaWlRSUmJPB5PostBP3G73ZKkyspKFRQU9Hq4LeIzAAAAAAAAAMCQEA6HJUlOpzPBlaC/tQdgwWCw19cgIAEAAAAAAAAADCldzUuBoaUv3mMCEgAAAAAAAAAAMOwQkAxhlhXR7t0/VjBYl+hSAAAAAAAAAACD3IsvvqisrKxEl9FnCEiGsOrqP2jz5jv0/vsjtXnzP8vn253okgAAAAAAAAAA3SgvL9fXv/51jR8/XikpKSosLNTJJ5+sZ599Vi0tLYkuT5dddpk2btzYb9e/+eabZbPZ9Jvf/KbfnqMjApIhzGbzKDX1KIXDTdq9+0l98MFYrV9/g5qb1yW6NAAAAAAAAABAB1u3btWMGTP0l7/8Rd/97ne1cuVKrVixQvfee6/+9Kc/6Y033kh0iXK73SooKOiXa7e0tOhXv/qV7r33Xj3//PP98hwHIiAZwnJyztLMmX/Q1KlXKjNzlCwrqPLyF/TRR0drzZqL1NDwfqJLBAAAAAAAAABIuvXWW2W32/Xxxx/r0ksv1eTJkzV27FhdcMEFWrZsmRYuXChJevLJJzV16lSlpqaqrKxMt956q5qammLXeeihh3TsscfGXfupp57S6NGjY9vvvPOOZs2apdTUVGVlZenkk0/Wjh07JEmfffaZTj/9dKWnpysjI0PHH3+8Pv74Y0mdh9jasmWLLrjgAhUWFiotLU0nnHBCpyBn9OjR+u53v6sbbrhB6enpGjlypH760592uv/f/OY3Ovroo3X//ffr3Xff1a5du47k5ewRApIhzjAM5eZO0IwZ12nGjBuVlzdJklRd/XutXDlHK1eeppqa/5NlWQmuFAAAAAAAAAD6lmVZag40J+RxOJ+51tTU6C9/+Ytuu+02paamdnmMYRiSJNM09aMf/Uhr167VSy+9pLfeekv33ntvj58rFArpwgsv1GmnnabVq1drxYoVuummm2LXX7x4sUaMGKGPPvpIn3zyie6//345HI4ur9XU1KRzzjlHb775plauXKkFCxZo4cKF2rlzZ9xx3//+9zVz5kytXLlSt956q772ta9pw4YNccf8/Oc/11VXXaXMzEydffbZevHFF3t8T71l7/dnQNLIzByhzMzL1NxcpV27/qGKis/V0PCuPv/8XaWmTtPIkfcqP/8ymSY/FgAAAAAAAAAGv5Zgi9IeTUvIczctbVKqs+uw40CbN2+WZVk66qij4trz8vLk8/kkSbfddpsef/xx3XXXXbH9o0eP1ne+8x3dcssteuaZZ3r0XF6vVw0NDTrvvPM0btw4SdLkyZNj+3fu3Kl/+Zd/0aRJbV+2nzBhQrfXmj59uqZPnx7bfuSRR/S73/1Of/jDH3T77bfH2s855xzdeuutkqT77rtPP/jBD/T222/H7nfTpk16//339dvf/laSdNVVV2nJkiV64IEHYsFNf6AHyTCUmpqvSZMu0OzZd2rEiDmy2Zxqbl6tdeuu0gcfjNfu3U8rHE78hD8AAAAAAAAAMJx9+OGHWrVqlaZMmSK/3y9JeuONN/TlL39ZpaWlSk9P19VXX62ampoeT+Kek5Oj6667TvPnz9fChQv1wx/+UPv27YvtX7Jkib7yla9o3rx5euyxx7Rly5Zur9XU1KR77rlHkydPVlZWltLS0rRu3bpOPUimTZsWWzcMQ0VFRaqsrIy1Pf/885o/f77y8vIktQUqDQ0Neuutt3p0T71FV4FhLCUlQ+PHn6VRo07R3r0faffuD+T379DmzXdqx45vq7T0DpWW3iaHIzfRpQIAAAAAAADAYfM4PGpa2nToA/vpuXtq/PjxMgyj07BTY8eOldQ2Obokbd++Xeedd56+9rWv6d/+7d+Uk5Ojv//977rxxhsVCATk8Xhkmman4b2CwWDc9gsvvKA777xTr7/+un7961/rgQce0PLly3XiiSfqoYce0pVXXqlly5bptdde07e+9S396le/0kUXXdSp7nvuuUfLly/X9773PY0fP15ut1uXXHKJAoFA3HEHDtFlGIYikYgkKRwO66WXXlJ5ebns9v2RRTgc1vPPP68vf/nLPX4dDxcBCeRwuDVq1KkaMWKOystXadeuf8jnq9b27d/Szp2Pq7j4qyorW6KUlJGJLhUAAAAAAAAAeswwjB4Pc5VIubm5OvPMM/XjH/9Yd9xxR7fzkHzyySeKRCL6/ve/L9NsGyDq1VdfjTsmPz9f5eXlsiwrNjzVqlWrOl1rxowZmjFjhpYuXao5c+bolVde0YknnihJmjhxoiZOnKi7775bV1xxhV544YUuA5L33ntP1113XWxfU1OTtm/fflj3/n//939qbGzUypUrZbPZYu1r1qzR9ddfr/r6+riJ4fsSQ2whxmZzqLT0BM2adYcmT16ktLQiRSIt2rPnh/rgg3Fat+5aNTevTXSZAAAAAAAAADDkPPPMMwqFQpo5c6Z+/etfa926ddqwYYN++ctfav369bLZbBo/fryCwaCefvppbd26Vb/4xS/03HPPxV1n7ty5qqqq0hNPPKEtW7boJz/5iV577bXY/m3btmnp0qVasWKFduzYob/85S/atGmTJk+erNbWVt1+++165513tGPHDr333nv66KOP4uYo6WjChAn67W9/q1WrVumzzz7TlVdeGesZ0lM///nPde6552r69Ok65phjYo9LL71UWVlZevnllw//xewhAhJ0YpqmCguP0fHH36Rp0xYrK2u0LCukior/1EcfHaPPPz9fDQ3vJbpMAAAAAAAAABgyxo0bp5UrV2revHlaunSppk+frpkzZ+rpp5/WPffco0ceeUTTp0/Xk08+qccff1zHHHOMXn75ZT366KNx15k8ebKeeeYZ/eQnP9H06dP14Ycf6p577ont93g8Wr9+vRYtWqSJEyfqpptu0m233aabb75ZNptNNTU1uuaaazRx4kRdeumlOvvss/Xwww93WfOTTz6p7OxsnXTSSVq4cKHmz5+v4447rsf3XFFRoWXLlmnRokWd9pmmqYsuukg///nPe3y9w2VYBw5GNsh4vV5lZmaqoaFBGRkZiS4nCW2SdOQJm9e7Rzt3vqfq6vWS2n5kMjJO1siR/6Lc3IUyDLI2AAAAAAAAAInl8/m0bds2jRkzRikpKYkuB/3oYO91T3MD5iBBj2RklOqYYy5VS0u1du36h8rLV8vrfU9r1rwnt3uiysr+WYWF18hm45cOAAAAAAAAACD58bV/HBaPJ09HHXW+Tjzx6yorO1k2m0utrRu1cePNev/9Udq+/REFgzWJLhMAAAAAAAAAgIMiIEGvuFzpGjdunubMuVvjxs2Xy5WpYLBS27d/UytWlGnjxtvV2rol0WUCAAAAAAAAANAlAhIcEbvdpbKyEzV79h2aPPlipaUVKRJp1d69P9EHH0zU2rX/JK/3g0SXCQAAAAAAAABAHOYgQZ8wTZsKC6eqoOAY1ddv165d/1Bt7WZVVf23qqr+W5mZp6is7B7l5p7HhO4AAAAAAAAAgIQjIEGfMgxD2dljlJ09Rk1NFdq1a4UqK9eooeFvamj4m9zuo6ITul/NhO4AAAAAAAAAgIThq/zoN2lphZo8+UKdeOKdKis7KTqh+wZt3HhTdEL37zChOwAAAAAAAAAgIQhI0O9crgyNG3dmdEL3s+RyZUQndH9QK1aM1KZNd6i1dWuiywQAAAAAAAAADCMEJBgwbRO6z9Hs2Xd2mNC9RXv2/FgffDBBa9deKq/3o0SXCQAAAAAAAAAYBghIMODaJ3Q//vibNH361crOHicpoqqq3+jTT2dp5crTVF39R1lWJNGlAgAAAAAAAACiXnzxRWVlZSW6jD5DQIKEaZvQfaymT79KM2feosLC6TIMUw0N72rNmvP14YeTtGfPswqHmxNdKgAAAAAAAAD0u/Lycn3961/X+PHjlZKSosLCQp188sl69tln1dLSkujydNlll2njxo19fl3DMGIPu92ukSNHasmSJfL7/X3+XB3Z+/XqQA+1T+g+ZswZ2rPnA+3d+4laWzdp06ZbtW3bv6qk5BaVlt4ml6s00aUCAAAAAAAAQJ/bunWrTj75ZGVlZem73/2upk6dKpfLpc8//1w//elPVVpaqvPPPz+hNbrdbrnd7n659gsvvKAFCxYoGAzqs88+0/XXX6/U1FQ98sgj/fJ8Ej1IkGRSUtondF+i8eMXKCUlW6FQnXbufFTvvz9a69ZdrcbGTxNdJgAAAAAAAAD0qVtvvVV2u10ff/yxLr30Uk2ePFljx47VBRdcoGXLlmnhwoWSpCeffFJTp05VamqqysrKdOutt6qpqSl2nYceekjHHnts3LWfeuopjR49Orb9zjvvaNasWUpNTVVWVpZOPvlk7dixQ5L02Wef6fTTT1d6eroyMjJ0/PHH6+OPP5bUeYitLVu26IILLlBhYaHS0tJ0wgkn6I033oh77tGjR+u73/2ubrjhBqWnp2vkyJH66U9/2un+s7KyVFRUpLKyMp133nm64IIL9Omn/ftZcK8DknfffVcLFy5USUmJDMPQ73//+9i+YDCo++67L/YmlZSU6JprrtHevXvjrjF69Oi4rjOGYeixxx7r9c1g6LDbnRoxYrZmz75dU6ZcpszMkbKskCoqfqlPPjleK1fOVXX1H5inBAAAAAAAAEC3LMtSONyckIdlWT2us6amRn/5y1902223KTU1tctjDMOQJJmmqR/96Edau3atXnrpJb311lu69957e/xcoVBIF154oU477TStXr1aK1as0E033RS7/uLFizVixAh99NFH+uSTT3T//ffL4XB0ea2mpiadc845evPNN7Vy5UotWLBACxcu1M6dO+OO+/73v6+ZM2dq5cqVuvXWW/W1r31NGzZs6LbGjRs36q233tLs2bN7fF+90eshtpqbmzV9+nTdcMMNuvjii+P2tbS06NNPP9WDDz6o6dOnq66uTl//+td1/vnnx5Kmdt/+9rf11a9+Nbadnp7e25IwBBmGqfz8ScrPnySvd692735fVVVr1dDwVzU0/FVu9wSNGPF1FRVdJ5ut618cAAAAAAAAAIanSKRFf/tbWkKe+5RTmnr8meXmzZtlWZaOOuqouPa8vDz5fD5J0m233abHH39cd911V2z/6NGj9Z3vfEe33HKLnnnmmR49l9frVUNDg8477zyNGzdOkjR58uTY/p07d+pf/uVfNGnSJEnShAkTur3W9OnTNX369Nj2I488ot/97nf6wx/+oNtvvz3Wfs455+jWW2+VJN133336wQ9+oLfffjvufq+44grZbDaFQiH5/X6dd955Wrp0aY/uqbd6HZCcffbZOvvss7vcl5mZqeXLl8e1/fjHP9asWbO0c+dOjRw5Mtaenp6uoqKi3paBYSQjo0RHH32xfL552rPnQ+3b1z5Pye3atu1BlZTcrNLS25mnBAAAAAAAAMCQ8OGHHyoSiWjx4sWxCcvfeOMNPfroo1q/fr28Xq9CoZB8Pp9aWlrk8XgOec2cnBxdd911mj9/vs4880zNmzdPl156qYqLiyVJS5Ys0Ve+8hX94he/0Lx58/RP//RPsSDlQE1NTXrooYe0bNky7du3T6FQSK2trZ16kEybNi22bhiGioqKVFlZGXfMD37wA82bN0/hcFibN2/WkiVLdPXVV+tXv/rVYb1mh2PAJmlvaGiQYRhx45NJ0mOPPaZHHnlEI0eO1JVXXqm7775bdjtzx6N7bfOUzNOoUaeqvHyV9uz5QK2ttdq58zHt2vU95edfprKyu5WefnyiSwUAAAAAAACQQKbp0SmnNB36wH567p4aP368DMPoNOzU2LFjJSk2Mfr27dt13nnn6Wtf+5r+7d/+TTk5Ofr73/+uG2+8UYFAQB6PR6ZpdhreKxgMxm2/8MILuvPOO/X666/r17/+tR544AEtX75cJ554oh566CFdeeWVWrZsmV577TV961vf0q9+9StddNFFneq+5557tHz5cn3ve9/T+PHj5Xa7dckllygQCMQdd+AQXYZhKBKJnz6hqKhI48ePlyQdddRRamxs1BVXXKHvfOc7sfa+NiBJhM/n03333acrrrhCGRkZsfY777xTxx13nHJycvSPf/xDS5cu1b59+/Tkk092ey2/3x9LyqS27kAYntrmKZml0tKZqqnZqF273ldDww5VVr6sysqXlZl5qsrKlig39zwZhi3R5QIAAAAAAAAYYIZhDIqh+XNzc3XmmWfqxz/+se64445u5yH55JNPFIlE9P3vf1+m2TbF+Kuvvhp3TH5+vsrLy2VZVmxekVWrVnW61owZMzRjxgwtXbpUc+bM0SuvvKITTzxRkjRx4kRNnDhRd999t6644gq98MILXQYk7733nq677rrYvqamJm3fvr23L0Mcm63tM93W1tY+uV5X+j0gCQaDuvTSS2VZlp599tm4fUuWLImtT5s2TU6nUzfffLMeffRRuVyuLq/36KOP6uGHH+7XmjG4GIapvLxJysubpMbGvdq1q32eknfV0PCu3O7xKi1tm6fEbk/MeIMAAAAAAAAAcDDPPPOMTj75ZM2cOVMPPfSQpk2bJtM09dFHH2n9+vU6/vjjNX78eAWDQT399NNauHCh3nvvPT333HNx15k7d66qqqr0xBNP6JJLLtHrr7+u1157LdZ5Ydu2bfrpT3+q888/XyUlJdqwYYM2bdqka665Rq2trfqXf/kXXXLJJRozZox2796tjz76SIsWLeqy5gkTJui3v/2tFi5cKMMw9OCDD3bqGdJT9fX1Ki8vVyQS0aZNm/Ttb39bEydOjJsfpa+Z/XZl7Q9HduzYoeXLl8f1HunK7NmzFQqFDpowLV26VA0NDbHHrl27+rhqDGbp6W3zlJx44tc1cuTJsttT1Nq6WZs336H33y/Tli33y+fjZwYAAAAAAABAchk3bpxWrlypefPmaenSpZo+fbpmzpypp59+Wvfcc48eeeQRTZ8+XU8++aQef/xxHXPMMXr55Zf16KOPxl1n8uTJeuaZZ/STn/xE06dP14cffqh77rkntt/j8Wj9+vVatGiRJk6cqJtuukm33Xabbr75ZtlsNtXU1Oiaa67RxIkTdemll+rss8/uttPCk08+qezsbJ100klauHCh5s+fr+OOO65X93/99deruLhYI0aM0BVXXKEpU6botdde69cpOQzrwMHIenMRw9Dvfvc7XXjhhbG29nBk06ZNevvtt5Wfn3/I67z88su65pprVF1drezs7B49t9frVWZmphoaGg4ZwAxPmyS9nOgiEiYcDqi8/DPt3v2+Wltro6025ecv0ogRdyoj46RYNzMAAAAAAAAAg5vP59O2bds0ZswYpaSkJLoc9KODvdc9zQ16Hb00NTVp8+bNse1t27Zp1apVysnJUXFxsS655BJ9+umn+tOf/qRwOKzy8nJJUk5OjpxOp1asWKEPPvhAp59+utLT07VixQrdfffduuqqq3ocjgCHYrM5VVp6gkpK2uYp2b37fdXXb1dV1auqqnpVaWnHa8SIr6ug4FKZZtfDugEAAAAAAAAAhp5e9yB55513dPrpp3dqv/baa/XQQw9pzJgxXZ739ttva+7cufr000916623av369fL7/RozZoyuvvpqLVmypNv5R7pCD5JDGd49SLrS1FSh3bs/UGXl54pEQpIkh6NQpaVfU3HxzXK5ihJcIQAAAAAAAIDeoAfJ8NEXPUj6ZIitRCIgORQCku4EAi3at+8T7dnzkQKBRkmSYThVUHCZRoz4utLTj09whQAAAAAAAAAOBwHJ8JHQIbaAwc7p9GjUqFNUVnaSqqvXaffuD+T17lZFxS9UUfELZWScrBEjvq68vItkmvxRAQAAAAAAAIChhE99MeyZpk0FBceooOAYeb17tHv3B6qq+kJe73v64ov35HKNUEnJbSop+aocjtxElwsAAAAAAAAA6ANmogsAkklGRqmOPvpinXji1zVq1KlyOFLl9+/Wtm1LtWJFmTZsuElNTWsSXSYAAAAAAAAA4AgRkABdcLnSNWbM6TrxxLs0adIFSksrUiTSqn37/p8+/niqVq2ap+rqP8qyIokuFQAAAAAAAADQCwyxBRyEzWZXUdGxKiycroaGndqz50NVVa1Tff2bqq9/Uykp41RaeruKi2+Q3d79ZD8AAAAAAAAAgORCQAL0gGEYysoapaysUfL5GrRnz4fat+9T+XxbtGXL3dq+/UEVFV2v0tLb5PEclehyAQAAAAAAAACHwBBbwGFKScnUuHFnas6cuzVx4rnyePIVDjdpz56n9eGHk/TZZ2epuvoPsqxwoksFAAAAAAAAMMht375dhmFo1apViS6lR+bOnau77ror0WX0CD1IgF6y2ZwqKZmp4uLjVVe3TXv2fKiamo2qq1uuurrlcrlGqbT0VhUX3yiHIzfR5QIAAAAAAADD1uj7lw3o821/7NwBfb7B5p133tGSJUu0du1alZWV6YEHHtB111034HXQgwQ4QoZhKCdnrKZOvVyzZ9+psrKTZLe75ffv0Nat92nFihFav/5GNTZ+muhSAQAAAAAAACChtm3bpnPPPVenn366Vq1apbvuuktf+cpX9Oc//3nAayEgAfqQ250VG37rqKPOV1pakSIRn8rLn9cnnxyvTz89WRUVrygSCSS6VAAAAAAAAABJIhKJ6IknntD48ePlcrk0cuRI/du//VvcMVu3btXpp58uj8ej6dOna8WKFbF9NTU1uuKKK1RaWiqPx6OpU6fqv/7rv+LOnzt3ru68807de++9ysnJUVFRkR566KG4YwzD0M9+9jNddNFF8ng8mjBhgv7whz/EHbNmzRqdffbZSktLU2Fhoa6++mpVV1f3+F6fe+45jRkzRt///vc1efJk3X777brkkkv0gx/8oMfX6CsEJEA/sNkcKi6eoeOPv0kzZtyggoKpMgybvN5/aN26xVqxYqS2bfum/P49iS4VAAAAAAAAQIItXbpUjz32mB588EF98cUXeuWVV1RYWBh3zL/+67/qnnvu0apVqzRx4kRdccUVCoVCkiSfz6fjjz9ey5Yt05o1a3TTTTfp6quv1ocffhh3jZdeekmpqan64IMP9MQTT+jb3/62li9fHnfMww8/rEsvvVSrV6/WOeeco8WLF6u2tlaSVF9frzPOOEMzZszQxx9/rNdff10VFRW69NJLe3yvK1as0Lx58+La5s+fHxf4DBTmIAH6kWEYyswsU2Zmmfz+s7Rv3yfau/cTBQIV2rHjEe3Y8V3l51+s0tLblZl5igzDSHTJAAAAAAAAAAZQY2OjfvjDH+rHP/6xrr32WknSuHHj9KUvfSnuuHvuuUfnnts2t8nDDz+sKVOmaPPmzZo0aZJKS0t1zz33xI6944479Oc//1mvvvqqZs2aFWufNm2avvWtb0mSJkyYoB//+Md68803deaZZ8aOue6663TFFVdIkr773e/qRz/6kT788EMtWLBAP/7xjzVjxgx997vfjR3//PPPq6ysTBs3btTEiRMPeb/l5eWdwp/CwkJ5vV61trbK7Xb36HXrCwQkwABxudI0evRpGjnyS6quXq89ez5SQ8MOVVX9RlVVv1Fq6lSVlt6uwsLFstlSE10uAAAAAAAAgAGwbt06+f1+ffnLXz7ocdOmTYutFxcXS5IqKys1adIkhcNhffe739Wrr76qPXv2KBAIyO/3y+PxdHuN9utUVlZ2e0xqaqoyMjJix3z22Wd6++23lZaW1qm+LVu29CggSSYEJMAAM02bCgqmqKBgipqaKrRnz4eqqPhczc2fa+PGm7V1630qKrpBJSVfk8czPtHlAgAAAAAAAOhHPe0x4XA4YuvtI9FEIhFJ0r//+7/rhz/8oZ566ilNnTpVqampuuuuuxQIBLq9Rvt12q/Rk2Oampq0cOFCPf74453qaw9tDqWoqEgVFRVxbRUVFcrIyBjQ3iMSAQmQUGlphTrqqIUaO3aeystXac+ej+Tz1Wn37ie1e/cPlJOzQKWltysnZ4EMgymDAAAAAAAAgKFmwoQJcrvdevPNN/WVr3ylV9d47733dMEFF+iqq66S1BacbNy4UUcffXRflqrjjjtO//M//6PRo0fLbu9dvDBnzhz93//9X1zb8uXLNWfOnL4o8bDwiSuQBBwOt8rK5mj27Ds0deqVyskZL8lSbe1r+vzzc/XBBxO0c+cTCgSqE10qAAAAAAAAgD6UkpKi++67T/fee6/+8z//U1u2bNH777+vn//85z2+xoQJE7R8+XL94x//0Lp163TzzTd36qXRF2677TbV1tbqiiuu0EcffaQtW7boz3/+s66//nqFw+EeXeOWW27R1q1bde+992r9+vV65pln9Oqrr+ruu+/u83oPhR4kQBIxDEO5uROUmztBLS012rv3Y+3bt1I+31Zt3Xqftm37pgoK/kklJV9TRsYcJnUHAAAAAAAAhoAHH3xQdrtd3/zmN7V3714VFxfrlltu6fH5DzzwgLZu3ar58+fL4/Hopptu0oUXXqiGhoY+rbOkpETvvfee7rvvPp111lny+/0aNWqUFixYINPsWX+MMWPGaNmyZbr77rv1wx/+UCNGjNDPfvYzzZ8/v09r7QnDsixrwJ+1D3m9XmVmZqqhoUEZGRmJLicJbZL0cqKLwBEIhwOqrFyjPXs+VlPTvlh7auo0lZR8TYWFi2W3pyewQgAAAAAAACA5+Hw+bdu2TWPGjFFKSkqiy0E/Oth73dPcgB4kQJKz2ZwqLj5OxcXHyevdo717P1Zl5Ro1N6/Wpk1f09at96qw8GqVlHxNaWnHJLpcAAAAAAAAABgUCEiAQSQjo1QZGaUaN+4slZev0t69n6i1tUZ79z6jvXufUWbmKSop+Zry8y+WaboSXS4AAAAAAAAAJC0CEmAQap/UfcSIE1Vfv0179nys6uoNamj4mxoa/qbNm/NVXHyjiotvlts9OtHlAgAAAAAAAEDSISABBjHDMJSdPVbZ2WPl93u1b9+n2rv3UwUCVdq58zHt3Pm4cnLOUWnp15STs0CGYUt0yQAAAAAAAACQFAhIgCHC5crQ6NFzNXLkKaqp2ai9ez9WXd1W1dYuU23tMqWkjFZx8c0qLr5BTmdBossFAAAAAAAAgIQiIAGGGNO0KT9/svLzJ6ulpUZ7936s8vJV8vm2a9u2pdq+/ZvKz79EJSW3KjPzZBmGkeiSAQAAAAAAgD5lWVaiS0A/i0QiR3wNAhJgCPN4cjV+/HyNGXOGKivXau/ej9XYuEeVlf+lysr/UmrqMSouvlmFhVfJ4chKdLkAAAAAAADAEXE4HDIMQ1VVVcrPz+fLwUOQZVkKBAKqqqqSaZpyOp29vpZhDfIozev1KjMzUw0NDcrIyEh0OUlok6SXE10Ekkhj4z7t3fuRKirWKBIJSpJM062CgstUXHyTMjJO5C8OAAAAAAAADFpNTU3avXs3vUiGOI/Ho+Li4i4Dkp7mBgQkQx4BCboWDPpUUbFa+/Z9oubmylh7aupUFRffRK8SAAAAAAAADFrhcFjBYDDRZaCf2Gw22e32br/oTUCCKAISHJxlWfJ6d2vfvk9VWbmWXiUAAAAAAAAABjUCEkQRkKDn6FUCAAAAAAAAYLDraW5g9vYJ3n33XS1cuFAlJSUyDEO///3v4/ZblqVvfvObKi4ultvt1rx587Rp06a4Y2pra7V48WJlZGQoKytLN954o5qamnpbEoAj5HCkaMSIWZo58xbNmHGDioqOlWk61Nz8uTZvvkMrVpRo/frr1dCwgjEcAQAAAAAAAAxqvQ5ImpubNX36dP3kJz/pcv8TTzyhH/3oR3ruuef0wQcfKDU1VfPnz5fP54sds3jxYq1du1bLly/Xn/70J7377ru66aabelsSgD5iGIYyM8s0adIFmjNnicaPP1upqQWKRFpVXv6iVq48SR9/PF27d/9YwWB9ossFAAAAAAAAgMPWJ0NsGYah3/3ud7rwwgsltfUeKSkp0T//8z/rnnvukSQ1NDSosLBQL774oi6//HKtW7dORx99tD766CPNnDlTkvT666/rnHPO0e7du1VSUtKj52aIrUNhiC30jfa5Svbu/URVVWsViYQkMVcJAAAAAAAAgOTS70NsHcy2bdtUXl6uefPmxdoyMzM1e/ZsrVixQpK0YsUKZWVlxcIRSZo3b55M09QHH3zQH2UBOALtvUomT74w2qtkAb1KAAAAAAAAAAxa9v64aHl5uSSpsLAwrr2wsDC2r7y8XAUFBfHF2O3KycmJHdMVv98vv98f2/Z6vX1VNoAecjjcGjFitkpLZ8X1Kmmfq2Tr1nuVn3+piou/oszMk+lVAgAAAAAAACDp9EsPkv706KOPKjMzM/YoKytLdEnAsHWwXiUVFS9p1apT9OGHk7Vz578rEKhIdLkAAAAAAAAAENMvAUlRUZEkqaIi/gPRioqK2L6ioiJVVlbG7Q+FQqqtrY0d05WlS5eqoaEh9ti1a1cfVw+gN9p7lcyceYtmzLhBRUXHyjQdam3doK1b79WKFSO0Zs3Fqqn5P1lWONHlAgAAAAAAABjm+iUgGTNmjIqKivTmm2/G2rxerz744APNmTNHkjRnzhzV19frk08+iR3z1ltvKRKJaPbs2d1e2+VyKSMjI+4BIHm09yqZNOkCnXTSP2vixIVKTy+VZYVUXf07ff75uVqxYpS2bXtQra3bEl0uAAAAAAAAgGGq13OQNDU1afPmzbHtbdu2adWqVcrJydHIkSN111136Tvf+Y4mTJigMWPG6MEHH1RJSYkuvPBCSdLkyZO1YMECffWrX9Vzzz2nYDCo22+/XZdffrlKSkqO+MYAJJ7d7lJJyXEqKTlOTU2VKi//VOXlqxUI7NGOHd/Rjh3fUVbWl1Vc/BXl5V0omy0l0SUDAAAAAAAAGCYMy7Ks3pz4zjvv6PTTT+/Ufu211+rFF1+UZVn61re+pZ/+9Keqr6/Xl770JT3zzDOaOHFi7Nja2lrdfvvt+uMf/yjTNLVo0SL96Ec/UlpaWo/r8Hq9yszMVENDA71JurRJ0suJLgKIiURCqq7eoH37PlVd3TZJbb+C7PZsFRZereLiG5WWNi2xRQIAAAAAAAAYtHqaG/Q6IEkWBCSHQkCC5NXaWq/y8pUqL18lv98ba09PP0HFxV9RQcHlstv5cw0AAAAAAACg5whIEEVAguRnWRHV1m7Vvn2fqqZmY2wSd9P0qKDgUhUXf0UZGSfJMIwEVwoAAAAAAAAg2fU0N+j1HCQA0FcMw1Ru7njl5o5XINCsiorPtG/fSrW0VKu8/EWVl78ot/soFRd/RUVF18jpLEh0yQAAAAAAAAAGOXqQDHn0IMHgZFmWvN7d2rfvU1VWrlUkEpQkGYZdubnnqajoeuXknC3TdCS4UgAAAAAAAADJhCG2EEVAgsEvFPKrsnKN9u1bqcbGPbF2h6NAhYVXqajoeqWlHZPACgEAAAAAAAAkCwISRBGQYGhpbq7Uvn2rVFGxWsFgc6w9PX2mioquV0HBFXI4shNYIQAAAAAAAIBEIiBBFAEJhqZIJKza2s0qL18Vndg9IkkyDJfy8i5UUdF1ysk5U4ZhS3ClAAAAAAAAAAYSk7QDGNJM06a8vKOUl3dUdGL3z1VevkrNzRWqqvq1qqp+LaezVEVF16io6Dp5PBMTXTIAAAAAAACAJEIPkiGPHiQYPizLUlNTucrLV6qiYo1CodbYvoyMk1VcfL3y8y+V3Z6ewCoBAAAAAAAA9CeG2EIUAQmGp0gkpOrqjSovX6Xa2s2S2n7VmaZH+fmLVFR0vbKyTpNhmIktFAAAAAAAAECfYogtAMOaadpVUHC0CgqOlt/fqIqKz7Rv3yq1ttaoouIXqqj4hVJSxqio6FoVFl4rt3t0oksGAAAAAAAAMIDoQTLk0YMEaGdZlrzePSovX6nKyrUKh/2xfVlZZ6io6Drl518smy01gVUCAAAAAAAAOBIMsYUoAhKgK+FwUNXV61Re/pnq6rZp/xBcqcrPv0RFRdcoK2suQ3ABAAAAAAAAgwxDbAHAQdhsDhUWTlNh4TT5fPUqL/9MFRWr1dpaq4qKl1RR8ZJcrjIVFl6lwsKrlZo6OdElAwAAAAAAAOhD9CAZ8uhBAvRU2xBcu1VR8ZkqK9cqFPLF9qWnn6DCwmtUUHC5nM68BFYJAAAAAAAA4GAYYgtRBCRAb4TDIdXWblR5+WrV1m6SZUUkSYZhV07OuSoquka5uefKNF0JrhQAAAAAAABARwyxBQBHwGazKz//aOXnH61AoFmVlWtUUbFajY17VVPzv6qp+V/Z7dkqKLhchYXXKCNjtgzDSHTZAAAAAAAAAHqIHiRDHj1IgL7U3FyliorPVF6+WoFAY6zd7Z6gwsJrVFh4ldzu0YkrEAAAAAAAABjmGGILUQQkQH+wrIjq67ervHy1qqrWKRIJxPZlZp6moqJrlJ9/iex2fi8BAAAAAAAAA4mABFEEJEB/C4UCqq5ep/Lyz1Rfv11S269V00xRXt5FKiy8RtnZ82SajGoIAAAAAAAA9DfmIAGAAWK3O1VUNF1FRdPl8zWoouJzVVR8ppaWalVW/pcqK/9LDkdhdL6SxUpPn8l8JQAAAAAAAECC0YNkyKMHCZAIlmWpsXGfKio+U2XlGgWDLbF9bfOVLFZBwWJ5POMTWCUAAAAAAAAw9DDEFqIISIBEi0TCqqvbooqKz1VdvV6RSCi2Lz19VjQsuUxOZ2ECqwQAAAAAAACGBgISRBGQAMmkbb6S9aqs/Fy1tVslRaJ7bMrJOVMFBYuVl3eh7Pa0RJYJAAAAAAAADFrMQQIASahtvpJpKiqapkCgSZWVa1VR8bkaG/eotvZ11da+LtP0KC/vQhUWLlZ29pkyTUeiywYAAAAAAACGHHqQDHn0IAEGg5aWGlVWfq6Kis/V2loba3c48pSff5kKCxcrI+NEJncHAAAAAAAADoEhthBFQAIMJm2Tu+9VRcVqVVauVTDYHNuXkjJWhYVXqqBgsVJTJyWwSgAAAAAAACB5EZAgioAEGKwikYjq67eqouJzVVWtUyQSjO1LSzs+Orn75XK5ihNYJQAAAAAAAJBcCEgQRUACDAXhcEDV1RtUUfG56uq2yLLaJ3c3lZU1VwUFlys/f5EcjpyE1gkAAAAAAAAkGgEJoghIgKEmEGhWVdUXqqhYLa93d6zdMOzKzp6vwsIrlJt7vuz29ARWCQAAAAAAACRGT3MD+wDWBADoA05nqkpLT1Bp6Qlqba1XVdUaVVSsUXNzhWprl6m2dplMM0W5ueepoOAK5eScLZvNneiyAQAAAAAAgKRi9ufFR48eLcMwOj1uu+02SdLcuXM77bvlllv6syQAGFLc7iyNHPklnXDCLTrhhFs1atSpcrtzFIn4VFX131q7dpH+8Y9CrVt3rWpqXoubxwQAAAAAAAAYzvp1iK2qqiqFw+HY9po1a3TmmWfq7bff1ty5czV37lxNnDhR3/72t2PHeDyewxoqiyG2DoUhtoDhxrIsNTWVq7JyjSor18jv98b22e25ys+/RAUFlysr6xQZhi2BlQIAAAAAAAB9LymG2MrPz4/bfuyxxzRu3DiddtppsTaPx6OioqL+LAMAhhXDMJSeXqz09GKNHTtPXu9uVVZ+rsrKLxQM1mjfvv/Qvn3/IaezRAUFl6qg4HKlp8+SYRiJLh0AAAAAAAAYMAM2SXsgEFBJSYmWLFmib3zjG5Lahthau3atLMtSUVGRFi5cqAcffFAej6fb6/j9fvn9/ti21+tVWVkZPUi6RQ8SAG0ikYjq67ersnKNqqvXKRTyxfalpIxRQcHlKii4XKmpUwlLAAAAAAAAMGj1tAfJgAUkr776qq688krt3LlTJSUlkqSf/vSnGjVqlEpKSrR69Wrdd999mjVrln772992e52HHnpIDz/8cKd2ApLuEJAA6CwSCam2dks0LNkQNzeJx3N0NCy5TB7PxARWCQAAAAAAABy+pAtI5s+fL6fTqT/+8Y/dHvPWW2/py1/+sjZv3qxx48Z1eQw9SA4XAQmAgwuHA6qp2aTKyjWqqdkky9o/d1Rq6nQVFFyq/Px/ksczIYFVAgAAAAAAAD2TFHOQtNuxY4feeOONg/YMkaTZs2dL0kEDEpfLJZfL1ec1AsBwZbM5VVAwRQUFUxQK+VRdvV4VFWtUX79Nzc2fadu2z7Rt278qLe1Y5ee3hyXjE102AAAAAAAAcEQGJCB54YUXVFBQoHPPPfegx61atUqSVFxcPABVAQAOZLenqKjoWBUVHatgsEXV1etVWfmF6uq2qalplZqaVmnbtm8oLW2G8vP/ibAEAAAAAAAAg1a/BySRSEQvvPCCrr32Wtnt+59uy5YteuWVV3TOOecoNzdXq1ev1t13361TTz1V06ZN6++yAACH4HB4VFx8nIqLj1Mg0BaWVFWtVV3ddjU1rVRT08poWHKc8vP/SQUF/yS3u+vefwAAAAAAAECy6fc5SP7yl79o/vz52rBhgyZO3D/Z765du3TVVVdpzZo1am5uVllZmS666CI98MADhzWXSE/HEhu+mIMEQN9qC0vWqarqC9XVbZcUie1LSzsuNmeJ2z02YTUCAAAAAABg+Eq6Sdr7CwHJoRCQAOg/gUBztGdJ2zBc0v6/UtLSju8QloxJXJEAAAAAAAAYVghIEEVAAmBgtIcllZVrVV+/XR3DkvT0mbEJ3t3u0YkqEQAAAAAAAMMAAQmiCEgADLy2sGSdKiu/6CYsuUR5eYuY4B0AAAAAAAB9joAEUQQkABIrEGhWVdU6VVWtVX39DnUMS1JTpyk/f5Hy8i5WauoUGYaRuEIBAAAAAAAwJBCQIIqABEDyCASaVFW1XtXV6zpN8O52T1R+/iLl5y9SWtpxhCUAAAAAAADoFQISRBGQAEhOwWCrqqs3qLp6nWprt8iywrF9Ltco5edfrPz8RcrImCPDMBNYKQAAAAAAAAYTAhJEEZAASH6hkF81NRtVXb1eNTWbFIkEY/uczmLl5V2k/PxFysw8VaZpT2ClAAAAAAAASHYEJIgiIAEwuITDQdXWblZV1TrV1GxUOOyP7bPbc5WXd4Hy8xcpO/vLMk1XAisFAAAAAABAMuppbsDXcAEAScVmcyg/f7Ly8ycrEgmprm6bqqrWqbp6vUKhGpWXP6/y8udls2UoN3eh8vMvVk7OAtlsnkSXDgAAAAAAgEGEHiRDHj1IAAwNkUhEDQ07omHJOgUCTbF9pulRTs7Zys+/WLm558puz0xgpQAAAAAAAEgkhthCFAEJgKHHsix5vbtVVfWFqqrWye9viO0zDIeysk5XXt6Fyss7Xy5XaQIrBQAAAAAAwEAjIEEUAQmAoc2yLDU1lauq6gtVV29QS0tV3P709FnRsORCeTyTZBhGgioFAAAAAADAQCAgQRQBCYDhpaWlRtXV61VdvUFe725J+/+ac7snxsKSjIzZMgwzcYUCAAAAAACgXxCQIIqABMDw5fc3qaZmg6qrN6iubqssKxzb53AUKi/vAuXlXajs7DNkmq4EVgoAAAAAAIC+QkCCKAISAJCkUMiv2trNqq7eoJqajQqH/bF9NluacnLOUV7eBcrJOUcOR1biCgUAAAAAAMAR6WluYB/AmgAASBi73aWCgikqKJiiSCSs+vrtsaG4AoFGVVW9qqqqV2UY9g6TvF/AJO8AAAAAAABDFD1Ihjx6kADAwViWpcbGvbGwpPMk7ycoL+9C5eaer9TUKUzyDgAAAAAAkOQYYgtRBCQAcDgONsl7SsoY5eYuVG7uQmVlnSrTdCauUAAAAAAAAHSJgARRBCQA0FsHm+TdZstQTs78aGByjhyO3ARWCgAAAAAAgHYEJIgiIAGAvhAOB1Rbu1U1NRtUU7NJwWBzh72mMjNPjvUu8XiOYiguAAAAAACABCEgQRQBCQD0tbZ5S/aounqjamo2qrm5Im6/2z0+FpZkZn5JpulIUKUAAAAAAADDDwEJoghIAKC/+Xz1sbCkvn573FBcdnuWcnLOVm7uQuXkLJDDkZ3ASgEAAAAAAIY+AhJEEZAAwEAKhfyqq9ui6uqNqq3dpGCwpcNem7KyTlFu7vnRobjGJ6xOAAAAAACAoYqABFEEJACQKJYVkde7O9a7pKWlKm6/xzMpOhTXucrIOImhuAAAAAAAAPoAAQmiCEgAIFm0ttappmaDqqs3qqFhhywrEttns2UqJ+cs5eSco5ycBXK5ihJYKQAAAAAAwOBFQIIoAhIASEahkE+1tZtVU7NJtbWbDxiKS0pLO165uecqN/ccpaefIMMwE1QpAAAAAADA4EJAgigCEgBIdpYVUWPj3lhY0ti4N26/w5GvnJwF0d4l85noHQAADDuj718WW9/+2LkJrAQAAAwGPc0N7ANYEwAA6IJhmMrIGKGMjBEaM+Z0+f1Nqq3drNraTaqt3aJgsEoVFb9QRcUvJJnKzDxJOTnnKDf3XKWmTpVhGIm+BQAAAAAAgEGHgAQAgCTjcqWpuPhYFRcfq0gkLK93l2pqNqmmZpNaWqrU0PB3NTT8Xdu2fUNOZ6lyc9vCkqysL8tuT0t0+QAAAAOmvWcJvUoAAEBvEJAAAJDETNOmrKzRysoarXHjzpTPVx8biquubqsCgT3at+//ad++/yfDcCor67Ro75Jz5PFMTHT5AAAAA47huAAAQE/164yvDz30kAzDiHtMmjQptt/n8+m2225Tbm6u0tLStGjRIlVUVPRnSQAADGopKVkqLT1BU6deoZNPvldTpy5WaekspaRky7ICqqtbri1b7taHHx6l998fp40bb1N19R8UCjUmunQAAAAAAICk0u89SKZMmaI33nhj/xPa9z/l3XffrWXLluk3v/mNMjMzdfvtt+viiy/We++9199lAQAw6NlsDuXmjldu7niNH79Ara01saG4Ghp2yufbqr17n9Hevc/IMBzKzPyScnLmKydngVJTpzF3CQAAAAAAGNb6PSCx2+0qKirq1N7Q0KCf//zneuWVV3TGGWdIkl544QVNnjxZ77//vk488cT+Lg0AgCHDMAx5PHnyePJUVjZHoZBf9fXbo5O9b5HPV6f6+rdVX/+2tm69X05nkbKz28KSnJwz5XDkJvoWAAAAAAAABlS/BySbNm1SSUmJUlJSNGfOHD366KMaOXKkPvnkEwWDQc2bNy927KRJkzRy5EitWLGi24DE7/fL7/fHtr1eb3/fAgAAg47d7lJe3lHKyztKktTSUhsNSzarvn67AoFyVVS8pIqKlyQZSk8/Ida7JD19lkyTacoAAAAAAMDQ1q+ffsyePVsvvviijjrqKO3bt08PP/ywTjnlFK1Zs0bl5eVyOp3KysqKO6ewsFDl5eXdXvPRRx/Vww8/3J9lAwAw5Hg8OfJ4ZmnEiFmKREJqaNip2totqq3drObmSjU2fqjGxg+1Y8cjstuzlJ09L9rDZL5SUsoSXT4AAAAAAECf69eA5Oyzz46tT5s2TbNnz9aoUaP06quvyu129+qaS5cu1ZIlS2LbXq9XZWV8cAMAQE+Zpl3Z2WOVnT1W48adKb/fGw1LtqiubotCoXpVVf23qqr+W5Lk8RwdHYprgTIzT5HNlpLgOwAAAAAAADhyAzp+RlZWliZOnKjNmzfrzDPPVCAQUH19fVwvkoqKii7nLGnncrnkcrkGoFogeT31xsbY+l3zJiawEgBDgcuVoeLiGSouniHLisjr3au6ura5S7zePWpp+UItLV9o9+4nZZpuZWWdpuzss5SdPU+pqccw2TsAABhQo+9flugSAADAEDGgAUlTU5O2bNmiq6++Wscff7wcDofefPNNLVq0SJK0YcMG7dy5U3PmzBnIsgAAQJRhmMrMHKHMzBEaPXqugsFW1dVtjU32Hgg0qrb2ddXWvi5J0cne5yk7+0xlZ8+Ty1WS4DsAAAAAAADomX4NSO655x4tXLhQo0aN0t69e/Wtb31LNptNV1xxhTIzM3XjjTdqyZIlysnJUUZGhu644w7NmTOn2wnaAQDAwHI43CoomKKCgimyLEvNzZXRobi2qqFhR3Sy91+qouKXktqG48rOPlM5OWcqM/M02e1pCb4DAAAAAACArvVrQLJ7925dccUVqqmpUX5+vr70pS/p/fffV35+viTpBz/4gUzT1KJFi+T3+zV//nw988wz/VkSMGh1HFYLABLBMAylpRUqLa1QI0eepHA4JK93l+rqtqiubpsaG/fFhuPas+eHMgyHMjLmxHqYpKfPlGkOaOdVAAAwiDGUFgAA6G/9+inFr371q4PuT0lJ0U9+8hP95Cc/6c8yAABAP7DZ7MrOHqPs7DGSpGCwRXV121RXt1V1dVvl89WroeFdNTS8q+3bvymbLVPZ2WfEAhO3ezzzlwAAAAAAgITha5wAAKBPOBye2HBcktTaWqva2rawpL5+m0KhBlVX/07V1b+TJLlco5STc6ays89UVtYZcjrzElk+AABIAvQaAQAAA4mABEhiDKsFYDBzu3NUWpqj0tKZsqyIGhv3qa5ui2prt8rr3S2/f4f27fuZ9u37mSRDaWkzor1LzlBm5pdks6Um+hYAAAAAAMAQRkACAAD6nWGYysgoVUZGqUaNOlXhcED19Ttiw3E1N1eqqelTNTV9ql27nojOXzJbWVlnKDv7DGVknCjTdCX6NgAAAAAAwBBCQAIAAAaczeZUbu4E5eZOkCT5/Y2qq9um+vptqqvbJr+/QQ0Nf1dDw9+1Y8e3ZZopysz8UiwwSUs7ngnfAQAAAADAEeGTBQAAkHAuV7qKiqapqGiaLMuSz1cfF5gEg82qq3tDdXVvaNs2yWZLV1bWabHAJDV1qgzDTPRtAAAAAACAQYSABBjkOs5Tcte8iQmsBAD6hmEYcruz5XZnq6TkOFmWpZaW6lhgUl+/XaFQo2pq/qSamj9Jkuz2XGVlzVV29hnKyjpDHs9RMgwjwXcCAAAAAACSGQEJAABIaoZhKDU1X6mp+RoxYpYsK6Kmpopo75LtamjYoVCoRtXV/6Pq6v+RJDmdxbHeJVlZZ8jtHp3YmwAAAN0aff+yRJcAAACGKQISAAAwqBiGqfT0YqWnF6us7CRFImE1Nu7tEJjsVCCwT5WVL6uy8mVJUkrKGGVlzVVW1mnKzDyNwAQAAAAAABCQAACAwc00bcrMLFNmZplGjTpV4XBIXu+uWGDS2LhHPt82lZdvU3n5C5Ikl2tkdA6T05SVNVcpKWMZkgsAAAAAgGGGgAQAAAwpNptd2dljlJ09RmPGSKGQXw0Nu9TQsF319TvU2LhXfv9OVVT8QhUVv5AkOZ2lHQKT0+R2TyQwAQAAAABgiCMgAQAAQ5rd7lJu7njl5o6XJIXDATU07FJ9/Q41NOyQ17tHgcAeVVa+osrKVyRJTmeRMjNPjQ3L5fFMJjABAAAAAGCIISABAADDis3mVE7OOOXkjJMkhcNBeb27VV/f1sOkLTApV1XVq6qqelWS5HDkRwOTth4mqanHyDDMRN4GAAA4TB0ng9/+2LkJrAQAACQLAhIAADCs2WyO2JBckhQOh9TYuFv19TuigckuBYNVqq7+H1VX/48kyW7PUVbWqcrMbAtM0tKmyTBsibwNAAAAAABwmAhIAAAAOrDZ7MrKGq2srNGSpEgkrMbGPbEeJg0NuxQK1aq6+veqrv599Jx0ZWScpMzMLykz80vKyJgtm82duJsAACBJ0YsDAAAkEwISAACAgzBNmzIzRyozc6RGjWoPTPbFJn1vaNilcLhRdXV/Vl3dnyVJhuFQevrx0cDkFGVmniyHIzfBdwIAQHLpGJYAAAAkAgEJAADAYWgLTEYoM3OERo78kiwroqamSjU07Iw+digQaJLX+7683ve1a9f3JEkez+RoWNIWmqSkjGLidwAAAAAAEoiABBhCnnpjoyTprnkTE1wJAAwfhmEqPb1I6elFGjFilizLks9X3yEw2amWlmq1tKxTS8s67dv3U0mS01mqzMwvKSurLTRpm/ideUwAAAAAABgoBCTAENQelEiEJQAw0AzDkNudLbc7W0VF0yVJgUCzvN5dqq9vC0yamvYpENijqqpfq6rq15Ikmy1TmZknxXqYpKefIJstJZG3AgAAAADAkEZAAgAA0M+czlTl5U1SXt4kSVI4HJTXuzvaw2SXvN5dCocbVFv7mmprX5MkGYZT6enHRSd/P0kZGXPkcpUk8jYAAAAAABhSCEgAAAAGmM3mUHb2GGVnj5EkRSIRNTdXxIbkqq/foWCwOTaPye7dT0qSXK5Rysyco4yMtsAkLW26TNORyFsBACApHO6E7x2P3/7YuX1dDgAAGCQISAAAABLMNE2lpxcrPb1YI0bMlmVZam2tk9e7K9rTZJeamyvl9+9QZeUOVVb+KnqeW+npJ8R6mGRkzJHTmZ/guwEAAAAAYHAgIAEAAEgyhmHI48mRx5MTm8ckFPKrsXGPGhp2x4KTUKhVDQ3vqqHh3di5bvf4uGG5UlOnMPk7AAAAAABdICABAAAYBOx2l7Kzxyo7e6wkybIstbRUy+vdFQtNWlqq1dq6Wa2tm1VR8Z+SJJstXRkZs2PDcmVknCiHIyuBdwIAAAAAQHIgIAEAABiEDMNQamq+UlPzVVx8nCQpGGyV17s7NixXY+MehcONqqt7Q3V1b8TO9XiOjoYms5WePkupqVNlmvyzEAAAAAAwvPA/YWCIe+qNjbH1u+ZNTGAlAID+5nC4lZs7Qbm5EyRJlhVRc3Nl3LBcra21amn5Qi0tX6i8/AVJ7XOZHK/09NnKyJiljIzZcrlGyjCMRN4OAAAAAAD9ioAEAABgiDIMU2lpRUpLK1Jp6UxJUiDQHO1lskeNjXvk9e5RONyqhoa/q6Hh77FzHY7CWFjSFpycILs9M1G3AgBAr4y+f1miSwAAAEmMgAQAAGAYcTpTlZd3lPLyjpLUPpdJjRob20ITr3ePmpsrFAxWqKbmj6qp+WPsXI9nUjQsaXu0Dc3lSNStAAAAAMCwFQ63yufbptTUoxNdyqBGQAIAADCMtc1lkqfU1DwVFR0rSQqHg2pqKpfXu1uNjXvl9e6Wz1evlpb1amlZr4qKlyRJppmitLTj4uYzSUkZzdBcAAAAANCHLCus5uYv1Nj4kbzeD9XY+JGam1fLND360pfqZBhmoksctAhIAAAAEMdmcygzs0yZmWWxtkCgOTYkV/vwXKGQT17vP+T1/iN2nMORp/T0mXEPp7OE0AQAAAAAesCyImpt3aTGxo+jj0/U2PipIpHmTseaZor8/r1KSRmRgEqHhn4NSB599FH99re/1fr16+V2u3XSSSfp8ccf11FHHRU7Zu7cufrrX/8ad97NN9+s5557rj9LAwAAwGFwOlOVmztRubkTJbUNzdXaWhs3n0lTU7mCwWrV1r6u2trXO5xb1EVoUpioWwEAAACApND2/6otamr6JC4QCYcbOx1rszmVllasjIxSpaeXKiNjhFyu7/NltCPUrwHJX//6V91222064YQTFAqF9I1vfENnnXWWvvjiC6WmpsaO++pXv6pvf/vbsW2Px9OfZQEAAOAIGYYhjydXHk+uioqmS5LC4ZCamyvU2Lg3+tin5uYqBQLlqqn5k2pq/hQ73+UaEReYpKUdL6czL1G3AwAAAAD9yrIs+Xw7OgQhH6up6ROFQvWdjjVNu9LSipSeXqL09GKlp5fI48k7YCgtUxLhyJHq14Dk9ddfj9t+8cUXVVBQoE8++USnnnpqrN3j8aioqKg/SwEAAEA/s9nsysgoVUZGaaytfT6T9sCksXGvWlqq5ffvlt+/W9XVv48dm5IyOi4wSU8/Xg5HdgLuBAAAAAB6z7Is+f2748KQxsaPFQrVdjrWMGxKSyuMhiEl0TAkX6bJvCIDYUDnIGloaJAk5eTkxLW//PLL+uUvf6mioiItXLhQDz74IL1IAAAAhoCu5jMJhQJqatoXF5q0ttbI59sun2+7qqr+O3ZsSsq4Dj1NZigtbYYcjpyungoAkERG378s0SX0WHut2x8796D7D3YMAGD4ag9DmppWRucLaQtDgsHKTscahqnU1MJYr5D09BKlphbING0JqBzSAAYkkUhEd911l04++WQdc8wxsfYrr7xSo0aNUklJiVavXq377rtPGzZs0G9/+9sur+P3++X3+2PbXq+332sHAABA37HbncrKGqWsrFGxtlDIFwtL2pc+X518vi3y+baoqurXsWNdrlGxsKT94XKVMvYuAAAAgH5lWWG1tGxSU9PK2KOxcaVCoZoujjaUmlrQoWdIsVJTC2WzDWifBRzCgL0bt912m9asWaO///3vce033XRTbH3q1KkqLi7Wl7/8ZW3ZskXjxo3rdJ1HH31UDz/8cL/XCwAAgIFjt6coO3uMsrPHxNqCwdYOocleNTWVy+erk9+/Q37/jrjhuRyOvFhYkp5+nNLSZsjtHn/AGL0AgP40mHqNAABwKJGIX83Na6MhyKfRQGS1IpHmLo42lJqar7S0/T1D0tIKZbM5BrxuHJ4BCUhuv/12/elPf9K7776rESNGHPTY2bNnS5I2b97cZUCydOlSLVmyJLbt9XpVVlbW6TgAAAAMbg6HWzk5Y5WTMzbWFgz61NxcrsbGfWpqKldTU7mam6sVDFarrm656uqWx4612dKUmjo9rrdJauoUmaYzEbcDAAAAIEmFQl41NX0W1yukpWWtLCvU6VjTtEeHySpSWlqx0tKKlJpaQBgySPVrQGJZlu644w797ne/0zvvvKMxY8Yc8pxVq1ZJkoqLi7vc73K55HK5+rJMAAAADBIOR4qyskYrK2t0rC0cDqq5uTI6Gfy+aGhSoXC4SV7ve/J634sdaxgOpaZOUVracdHeJjOUmjpddntaAu4GAAAAwEALBCrU2Lgybpis1tbNXR5rt6fEQpD2QMTtzmUC9SGkXwOS2267Ta+88or+93//V+np6SovL5ckZWZmyu12a8uWLXrllVd0zjnnKDc3V6tXr9bdd9+tU089VdOmTevP0gAAADBE2GwOZWSUKiOjNNYWiUTU2lqtxsZyNTXt720SCvnU1LRKTU2r4q6RkjJOaWnTlJo6TWlp05WWNk0pKWMYogsAAAAYpCKRgFpaNqip6TM1N69WU9NqNTevViCwr8vjnc50pae3hSFtj2KlpGQy1+EQ168BybPPPitJmjt3blz7Cy+8oOuuu05Op1NvvPGGnnrqKTU3N6usrEyLFi3SAw880J9lAUnpqTc2SpLumjcxwZUAADD4maap1NQCpaYWSGr74o1lWfL56qNhyb5oeFKuQKAxNhl8dfXvYtdoG6JrajQ0aQtOUlOnym7PSNBdAUByGipzjwyV+wCA4cjvL48LQZqaPlNLyzpZVrCLow253TlxvULS0orkdKYOeN1IvH4fYutgysrK9Ne//rU/SwAAAAAkSYZhyO3Oltudrfz8ybH2QKBZzc0VampqezQ3V6i5uSo6RNcKeb0r4q6TkjJaqanT43qcuN1jZRi2gb4lAAAAYFhpmzh9XSwEaQ9FgsHKLo+32VxKSytUampBdNm2brczhQPaDMgk7QAAAH2pvdedRM87HDmnM1VO51hlZ++fDD4SCau1tSYWmDQ1VXbobbJdPt921dT8b+x40/QoNfWYaC+TabHwxOHISsAdAQAAAIObZVkKBPbFhSBtvULWSwp3cUZ7r5C2EKR9yRBZOBQCEgAAAOAApmnrMETX1Fh7MNiipqZKNTeXR8OTSjU3VyoSaVFj44dqbPww7jou1wilph4jj2eKUlOPUWrqFKWmHi2bje77AAAAgCQFgzVqbl6r5uY10WXbeihU0+XxdntKLATp2CvEZnMMcOUYCghIAAAAgB5yODzKzh6t7OzRsba2CeFroz1NytXcXKmmpgr5/Q3y+3fL79+t2trX466TkjKmQ2DSFqB4PJNks6UM8B0BwMF1nJdj+2PndtkOAEBPhEINam7+okMQskYtLWsVCJR3c4YhjyfvgCGyiuRypdMrBH2GgARIMh2HjQEAAMmvbUL4PKWm5qmgYEqsPRj0qaWlMtrLpCq2DAab5fNtk8+3TTU1f+x4Jbnd46PByf7wxO2eINPk23AAAAAYHMLh5mgQsj8EaW5eI79/d7fnpKRkyePJj/biblt6PPmy2fj4Gv2LnzAAAACgHzgcKcrMHKnMzJFx7W2TwrcFJm0BStt6KORTa+tGtbZuVHX1b2PHG4ZDHs9RBwzTNUUpKWNlmvxzHgAAAIkRDvvU0rI+LgRpbl4rn29bt+c4nelxIUh7EGK3OwewcmA//kcFDCNMagygv3X3e4bfPziY9p+P4fKz0TYpfGrcMF1tk1A2xeY02R+gVCkcDkT/s7lGVVW/jp1jGE653ROUmjpZHs8keTyTo4+JzHECAP2kuyHHAGAoCwZr1dKyLhqGtC1bWtZFgxCry3McjtQDgpB8eTwFcjgYUhbJhYAEAAAAQ9JgCuYMw5DLlS6XK105OeNi7ZZlye9viBuiqz04iUQCamlZq5aWtZ2u53KN6iI4mSynM28gbwsAAACDhGVF5PfvVkvLurgQpKVlvYLBym7Ps9vdcSFIW4+QAjmdngGsHug9AhIAAAAgSRmGoZSULKWkZCk3d0Ks3bIs+XwNammpVktLVXTZ9ggGW+T375Dfv6PT5PB2e240OIkPT1JSRsowzIG+PQAAAAywSCSg1tZNnXqDtLSsVyTS0u15LleGPJ58eTy50WXbHHwORyoTpmNQIyABAACdDKZv3h+O3t5XX78eA/H6DtX3EG0Mw5DbnSW3O0u5uePj9gUCLZ1Ck5aWavl89QqFatTQ8Hc1NPw97hzTdGtbfbH2NpWpvLlU3zj/PHk8E+V2T5DdnjGQtwYAAIAjZFmWgsGqaBCyUS0tG2IhSGvrFknhLs8zDFNud05cEJKamie3O485QjBkEZAAAAAAQ4jT6ZHTOUpZWaPi2sPhYKfQpLm5Sq2ttYpEWjUqY6tGZWyVJK1b90qH6xXJ7Z4YDUz2L93usTJN14DeGwAAAPYLhRpjIUhr68a4ZTjc0O15NptTHk9epyAkJSVbpmkbwDsAEo+ABAAw7BxqIvGh+m37jvfdlSO5766u3d3zHc7rf6ia+8pQf+8BSbLZHEpPL1Z6enFceyQSkc9Xp1+t+Ewp8splNGpsdkgtLTUKBpsVCJQrEChXQ8O7B1zRVErKaLndEzqFJykpZTIM/nMNYGhrn7CdydoB9KdIxK/W1q2dApDW1o0KBMoPeq7LlSmPJzfaKyQvFoQ4nekMiwVEEZAACTRQH/wB3f2sMbRPYvVnYNGXkv39TLZwIxGv1+G8Bsn+fiab4fB6maYpjydXXmuEvJJkSYtmtN1rKORTS0utWltr1NJSE7cMhwPy+bbK59uquro/x13TMFxyu8cfEJxMkNs9Tk5nMf8hB5Jc+wf/PW0HAByZSCQkv39Xl71BfL4dkiLdnutwpEYDkFy53bmxpdudLZvNMXA3AQxSBCQAAAAAumS3pygjo0QZGSVx7ZZlKRBojgtMWltro+u1siy/WlrWqqVlbadrmqZHbvdYpaSMk9u9/5GSMk4pKaNkmvxHHgAADD3hcItaW7fK59ui1tb9D59vi3y+7bKsULfn2mzODuFHTocQJFcOR8oA3gUw9BCQAMPUcPhGLIanofSz3ZN7OdQx/dlTrS+uncw96ZK5tsPVk3tJtp44SG6GYcjlSpPLldZprhPLisjnazig10lbLxSfr0GRSIuam9eouXlNF1e2KSVlVFxo0jFEsdlS++weOn4TnuFxMJwxTNSR4/cJAKl9YvSaLgOQ1tYtCgT2HfR8w7B1CD9y4nqDOJ2p9MAF+gkBCYAhbyh9YA70RG8/2B9KgUBvJctrMNDD4g0myfw7/VDz6xzY3pfPOdDDuR3sOQ3DlNudLbc7Wzk54+P2RSJh+Xz1am2tk89Xq9bWuuijVj5fnSKRUIdhu5Z3urbDURgNS8YfEKKMlcORP6w+OOADWQAABp5lheX37+kUfrS2blZr6xaFw96Dnm+zuaLhR07s30spKW3rLlfGsPq3DJAsCEgAAAAADAjTtMnjafs25IHahu1q0n/+7TO5jCY5jSZNKzLU2toWpIRCrQoGKxQMVsjr/UcX1/YoJWV09DGmw/poud1jZLfn8KEDAAA4KMuKKBDYJ59vu3y+7Wpt3RZb9/m2y+/fKcsKHvQaTmd6NPzIUUpKdmzd7c6W3e7m3yNAkiEgAZDU+vpbt4n85nEyf+s5WfTk29cd9fXPxEAY6sNS9YW+6AHTk5+f3jqc5xlKv8O6k2xDc/FnLPl193PcNmxXuppVoGarQLKk8r37z7vttJGxXidvfL6xLURRk/LcPvn9XkUiLWpp+UItLV90+bytIbfyMsfFwpP5o1tU3VqoqpZCBYN1stuz4j6woIcGhhsmYO8b/O4AkltbAFLRIfSID0B8vh2yrMBBr2EYplJSsroMQFJSmBgdGGwISAAAAAAkPYcjRQ5HidLTS1RpOSSrrX3hnInRobm88vnqo486+XwN8vnqVdNQLYfRKre9NW7ukysm7b/2e+99XTZbRlzPk7NGtaiqtVA1rfkKBKrlcOTyjU8AAJJcWwBSLr9/V5c9QNomQ/cf4iqGUlIylZKS1eXD5UqXYZgDcj8A+h8BCdBPkvFbvocj2etP9vqGq8P51nVfvIf8HOBI0Evg8PT2z3dHh/Pn9HD/fA/F9/NwXoPhPm+Nadrl8eTI48nptO+pNzbKUFhONeuy47JiIcpn23fJaTTLqWY5DJ/CYa+amz9Tc/NnkqQrJ++/xj/+8XWZplsuV5lSUkbK5SqTyzVSKSlty7b2sj6dRB7oa/QQATDYWZalUKhefv9O+Xy75Pfv6rC+M7q9W5YVOsSVDLlcGZ2CD7e7bel0Zsg0CUCA4YKABOgCH7rGG4xDxCTyg7Ke3F9vX4PB/gFYX3zAOtB6+5onS/19bbDcVzLW2V1NiRyiKpFDzCXy91ZXdSTiZ6YvhpPri+fuy7/b+yLw7ovnPvB6lmzyKyNu0vg/bN1/zB2nj+nQ+6TtsXpHe4DSIofhUyTSqtbWjWpt7b5Wuz3nIAHKSDmdJTJN/gsGDHcMwwV0LRxujYYcu+Tz7Yxbtq9HIs09uFLbsJ3d9wDJkGna+v1+AAwO/OscAAAAwLBmszmUmpqv1NT8WNsft+0PQu48Y6z8fq98Pq/8/gb5/Q3y+RqibW3b4XBAoVCtmppq1dS0qptnMuVylUQDlDK5XKVyOkvkcpXGrdts7v69YQAABpBlWQqHvfL798jv36tAoG3Ztr071vsjGKzu0fUcDo9crsxoL5COy7Z1pzOdHiAAeoyABEBMT769eahv0x/JJMnJNtFvR4fbK+RIn2egXoO+HuaqN/sHSn9O1D0QkuV1xPAylH7uhtK99LX+em2SpcdQX/jRW1s7bLmjj6JYy13zJioU8snn8+rXH3wR7XXS1vvEabTIoRalmC2yrEj0g6DdklZ0+3x2e3aXwUnHdUNhWeLbrzg4htUC0N8ikYACgX3RsGOPAoG9Xazv7WHPD8lmc8rlypDLlamUlIxo6NFxPYNJ0AH0KQISAAAAADhCdnuK0tJS1GjVtzVY8fu/PneCAoHmDj1QvAoEGuX3N8rvb1/3KhIJKRSqUyhUp5aWtd0+38/OMtUQyFadL1dr1vz8gBClWE5nkZzOoujk8nyLFgBweCKRoILBKgUC5dFJz7sOQILBqh5f025PkdOZLpcrPdrTI61T7w+7PUWGYfTjnQFAPAISoAO+XQoM3m/8dvXnlz/T6G/JMt/RwdrQPxI5f8hA6G3PycO9v4GemyqRvR4Nw5DLlSaXK01SaTfPacmmoG6YUxANThr1zhfbZDda5VSLRmRa8vsbFQg0yWZGlJNSo5yUGlVXH6xum5zOglhg0vlRGFu32TL4UAroQ4fTg4d5STAQLCuiYLA2FnoEAuUKBivitve316hT2t8Nw7DJ5UqPhh8ZcrnS5HRmRIOQ9Oh6mmw2Z//eIAD0AgEJcBj6YmLtZPzAOdk+4OvtNY7ktT2ca/TnpPV9qT+HlErGn2MMng9e0bXB/v4NxIfX/fGcw8lg//u+P5/jSOs73GFKu/971FBYTv2/FfXRbY+kKbHPpy44vu28SCSiZ99aLbta5TRaddaktFigEgi0BSgNTQ2yG35JYQUC+xQI7DtkjaaZ0ilAcTgKD2jLl8ORL5stnTAFAJKAZUUUCtVHe3tURB+dA49AoELBYIUsK3QYVzfkdKbK6Uzr0PMjvVP44XC4+TsBwKBFQAIAAAAAg4hpmgrKo6A8arWk0tLOgUtbIBORQz5dM7tAgUCzAoGmbh/hcECRiE8+33b5fNsPWYNhOOVw5McCk/ZHx22nsyC2brdn8eEZAPSAZYUVDNZEA48qBYP7H11vV0sKH9Zz2O3uaOjR/kg9YLvt0RZ8MEwjgKGNgAQ4hO6+EdjVtwCPZJLzwW64DvWSLL0/kqWOoWK43jeQrPrzz2R/DfE0lH6PDKV7GewO/71oC1J+/kFTdDtVd82b0eX17jh9zEEClP3hSjDYokgkKMsKKBDYo0BgT48qMQy7HI68bsOUtn25sttz5HDkyOHIlWl6CFUOoX1YJoZkApKTZVkKh70KBmsVCtVGg4+agwYeoVCtejq0VUc2m+uAoKO70CNVpmnr+5sFgEGKgATAoDEQ44YzjFRi8OEbAPQPfr8OD30x3KjN5pDbna3/eK9Kkk1Spu6ad0KXx4bDAQUCLQoGmxUMti3jt1sUCOzfFw4HZFmh2DAvPRWM2NUcSFdJTokcjpy48KR93W7PlcORowueWaumYJo+evDSQwYryTzXQzLXhsTgZyI5tA1j5Y2FHG3L2tiyq7ZQqEbBYJ0Ot3dHO7vdLYfDI6czVQ6HJ/pIldPZtozf9sg0+YgPAHqD354AAAAAgB6z2Zxyu51yu7N6dHw4HIqFJZ0Dlbb1UKhVwWBrdNkiy4rIYYaUlVKnlpa6Qz7Ht09uW/7tbzdEh//aH57Y7Vmy2zNls2XKbs/S2aP3qiWUqpZQqmprHbLb29rb99tsKUfw6gBIRm09OZoVCtUrHG5QKFSvUKgh+mhbj2+vVyhU1yH8qJMU6fXzm6Y9Gni4O4Qd3QcedrtHpsnQVgAwEJIiIPnJT36if//3f1d5ebmmT5+up59+WrNmzUp0WUCP8e3MwWmge6Qku+E6dAyAeAP155vfIxjOEjk0Zm//vu/YO+Vwhpq9a95E2Wx22WwZeu7v7b1HUqKPnE7Xlto+yHz6zS9kU0B2BXTp8fkdwpPWuPX2ZUNzo2wKyDQi0eG/uu+tctmk/eurVz/eab9hOGOhyoHhSft2+z6bLU02W3r00bZut7etm6aru5f2sNGLAMOVZVmKRFoVDjcpHG5UKNQYW29bersMO/YHIe1tXvW2J0dHpumQw+GOhR37Q4/ObXa7J7pMkc3mOPIXAwDQLxIekPz617/WkiVL9Nxzz2n27Nl66qmnNH/+fG3YsEEFBQWJLg8AAAAAMIAMw1BEDkXkUFCpys4ee8hz2gIaS6ZCHYKVAgWDLQqF/AqFfAqHfQqFfPp8V5VsCspmBFSYZkb3tR0jSZYVUDBYqWCw8gjvw9FlcNJdoGKzpeuEwk3yhVPkD6fI6y2UzeaRaXqU7qxXIOxSIOw8opqA/hSJBKNhRosikZa45f5QIz7gaAs8Gjvt7xiEHEnPjQMZhimbzSW7PSX6iF+32fa3HRh62O1u2WwJ/xgNANDHEv6b/cknn9RXv/pVXX/99ZKk5557TsuWLdPzzz+v+++/P8HVAUgEvlUMAEA8/m5EfxuInrV9rXNNBwYrY7o8b9mO/edtbui4py1guelLIxQK+ToFK+3b7ettoYpf4XCgw8OvSCTUdjUrqFCoNjrhcs/cNmP/+qef7l9/+oz968vfskfDEpceO6Vt+cknj8TClP1Lty4/qlyBsEv+iCt2TijiUChiVzDiUCjiiC1j61Z8ezDiUDDskCUmdR4oHXsM9aS9Y68iy7JkWSFFIn5Zll+RiF8nP/aaHGZQdjOoZXfMViTij9u//+HrEGy0HhByHLjd+RjLCvXL69HONB3REMPZ4eE6SNDRud00HQedowgAMPwYlmVZiXryQCAgj8ej//7v/9aFF14Ya7/22mtVX1+v//3f/z3kNbxerzIzM9XQ0KCMjIx+rHaw2iTp5UQXkdSS8T97AAAAwHDT3TBefXG9jnp77UNdr31/JBLRj9/6QjaFZCqoxbNKYuHJss92ylRQpkI6aWxGrD0cDioU8mtnTb1MhWQqHFsaCslmHPnQQEcqHDHjAxUrPkQJR+wKWzZFLFNhy6ZwxK6IZVPYMtuWB+637G37IrbYdvu+tjZ77NyI1TYXgyVDlmVEl6YsSdZB9kmGIpYRXbYfZ8qy2o6XDBmKqO3zckuGLBmGFWuLXk0yOu7bvy5ZMqPLuP2GJVMRmWZYNiMs0wjLHl3ajHC0PRLdDkWPichm7j/G1un4tmPsZlB2I9S2NINymCEVZRhxgYeUsI95YkzTIZvNEVt2DDTa1+32zm3t62374sOQIwk2uhsyEJ1/h/Xk2I6O5PXs6rn787061LX7+rn5uUt+h/Pzn5xMSd9MdBFJq6e5QUJ7kFRXVyscDquwsDCuvbCwUOvXr+/yHL/fL7/fH9v2er39WuPg55Y0MtFFJLU99Yee9BEAAABAf9v//5a++Td61/8P6v21D3W9tv2mKe2q3981JSNjemx9Td1nsfXFY/a3t/vFf3/Wqa2NJVNh2Yxg2wfqCkU/WA/JjGsLxtr3HxOMHtfWZhrhtgAm+uF8+3pXy46fR9vMiGymXy75u6kRiRIMHmyvqVB70CSbMt0pMk2HTNOuPfVBRWTT2PxMmaZdpumUabaFEW3BhqvDdldtXR3jlGnak66XRvyfez4j6ejA32E9O7aj3r+eXT13f75Xh7p2Xz83P3fJ73B+/pOTmegChoSE9iDZu3evSktL9Y9//ENz5syJtd97773661//qg8++KDTOQ899JAefvjhTu30IAEAAAAAoG90NVRTd0MztW0HZVkhWVb7MtSj7f3ndX+8ZMmyInFLKaK2jzM6rkcOcWx7+/71tg+XDBlG/LL7dTP64X936+3Xscc92oZ2sh/w6F2babpiD8NwHWKbodEAAMPToOhBkpeXJ5vNpoqKirj2iooKFRUVdXnO0qVLtWTJkti21+tVWVlZv9YJAAAAAMBwYhiGDKNtiCQpLdHlAAAA9IuEBiROp1PHH3+83nzzzdgcJJFIRG+++aZuv/32Ls9xuVxyuVwDWCUAAAAAAAAAAIfHsiyFrbCC4aBCkVDcIxiJb+vtMV857itJN7ThYJLQgESSlixZomuvvVYzZ87UrFmz9NRTT6m5uVnXX399oksDAAAAAAAAAPSDjuFBexDQvt4eBLSvd9d24Dk9aesUNljdBxAHBhSHe0zYCvf763jdsdfJYXP0+/MMVQkPSC677DJVVVXpm9/8psrLy3Xsscfq9ddf7zRxOwAAAAAAAAAMRxEr0qehwRFdpw+ff7gyZMg0zNjDZtritg982IzO+22GTZPzJ8tSwqYYHxISOkl7X+jpZCsAAAAAAAAAhq/2kCEQDigYiS4Psn04x3a7HTnyawYjQUWsSKJfvgHTVSjQMUBob++yrf0cs3Oo0NXxPQojzOhSvQ8zDnz0xZBYpmHqm6d9sw9e8aFpUEzSDgAAAAAAAGBwiVgRBcKBgz66+6C/V0FDH4UZAzHc0UDq2Auh/UP7rkKFuDbD1ik8aG/radhwsGt0ajtIMNFVfX0VHgA9RUACAAAAAAAAJAHLshSKhBQIB+QP+7sMHvyhrtsPdk6n8yJHdr1QJJTol6rPdPwQ32bY4j60b2/ruD/u2ANCga7aD1yPXb/jsQd5/oMFDQQJwJEjIAEAAAAAAMCQZ1lW7EN/f8jffwFE5MiuNxgd+CF+d+HCwYKD2HrHgKC7QOFQ4UN3z3/AfkMGIQMwzBGQAAAAAAAAoE+FI+FYEHFgKNFx2d2+9mCh2329OGewhg82wya7ae8UPBxqaTftXQYWNtMmu9HN9TqEEF1dr6tz2ns0AMBgREACAAAAAAAwSFmWpWAk2KuwoUfBRW/OCfkHxVwPHXsS2E1712HDgcHBYYQTh3N8dzXQwwEA+hcBCQAAAAAAwGHq2EPCF/LJH44uu9nuyTGx7W7afSFfp7AjEA7IkpXol+OQOvZA6BgEtK/H9rX3bOjBeqdzevoc0W2CBwAAAQkAAAAAABg0DjeY6Bgu9DaY6CrkSNZJqg0ZcUMhHRgKdLmvQ/jQVfvBzulJEGEaJmEEACApEZAAAAAAAIAeiViRWFDgC/nUGmyN3w7Fb/e4B8VhhBzJGkzYTXvcoz0oiGuLhgYdw4UD2+O2u7jeocIO5oIAAKDnCEgAAAAAABhEwpHwQUOJA0OLgx4T7nnY0RpsVTASTPTtdzJQwUSnczrsp4cEAACDEwEJAAAAAACHKRQJ9T6UOEhvi56EHckSUpiG2SlM6PZxmMHEQUMOggkAANBHCEgAAAAAAINW+5BPrcHWWLjQvn6wZXsYEWvrEEz0JMhIlmGeDgwpHKaj56HFYZzjsHU+hqGcAADAYEdAAgAAAADoE5ZlyR/2dx1AdLPsMtDo6XHBVvnD/kTfdpe9HQ4WQthMW9ehhC2+x0VXoQQhBQAAQN8hIAEAAACAIciyLAUjwd73qOgmtDjYcb6QT5ashN1ze2+K9vChY8AQazMdsSAiri0aUPSoN8UBYQchBQAAwOBEQAIAAAAAA8SyrFjA0BJsUWuwbdkSbDn8th70zohYkYTdqyEjLqToGCq0hxRxbT047qDBh81BUAEAAIDDQkACAAAAYNgLhoNx4UPHUKJHbaGeBRutwdaE9bDoFD4cEEh01bOiNyFF+zaTZwMAACDZEZAAAAAASEoRK3LQkKJHvS5CPQs7EjHhtmmYcpgOOWyOuIDBYTpi7QeGDh33dxVadBl82ByyGTbCCgAAAOAABCQAAAAADkv7MFHNweZY2NAc2L/eEmyJ29e+Py6c6MFwUomafDsuiOgmvGgPJ+LWu9nf5TUYDgoAAABIOAISAAAAYAixLEv+sP+ggcVB93URbHS1b6Ad2COiq14WBw0yOrYdEFTQ0wIAAAAYnghIAAAAgAFiWZYC4UCPQ4hD7usm9BjIOS46Df3UYek0nZ0CjC7DjQPOO7DNbtoJLQAAAAD0OQISAAAAICoYDqo52NxtKNHbnhcd90esyIDdj82wxQcWNmf8sE9dhBoHhhud2tuvEQ0yGCYKAAAAwGBFQAIAAIBBo+PcF82B5k7L9iCiq33NwW7aOiyDkeCA3Uv7BN1Om7NTr4oeBRYdzom7BnNcAAAAAECPEJAAAACgT0WsSKwHxaECicMNMQaqB4Yho9vQobueFQcGFx17WnS1tJm2fr8PAAAAAED3CEgAAACGoY5DSR0qkDjcXhitodYBuQebYYuFGO1hRGy7PcTosN4x8Oh0/AHbTNQNAAAAAEMfAQkAAECSau+J0RRoUlOgSc2B5v3rweZO7ck4lNTBQogD57Q4MNw4VIjB8FEAAAAAgCNBQAIAAHCEOg4pdbAAo1P7IY5pCbb0e+0dh5I6nF4YPQkx7KadXhgAAAAAgKRFQAIAAIaNiBVRa7D18EKMQLOaggc/pr+DDENGLHyIPUxnfCjRyxCDeTAAAAAAAMMVAQkAAEg6lmW19cjoaYDRw94ZzcHmfq89LsToEETEttuDDrOLtm7OpScGAAAAAAB9j4AEAAAckYgViQURTYEmNfob968HGrttO1jI0RxoliWrX+vuLsCICy3MngUY7Q+CDAAAAAAABg8CEgAAhhHLstQaao0FFu1hRXchRk+O6e/hpQ4ZYkR7Y3QVYnR3HkEGAAAAAAAgIAEAIElZlqVAONCzEOMwwo3+6plhyJDL7uoURrhsrliY0d16x+GmOoYfDtNBkAEAAAAAAPpFvwQk27dv1yOPPKK33npL5eXlKikp0VVXXaV//dd/ldPpjB0zZsyYTueuWLFCJ554Yn+UBQBAvwpFQn0WYrS3hyKhfqu3uyCju0d3+9tDEZthI8wAAAAAAACDRr8EJOvXr1ckEtF//Md/aPz48VqzZo2++tWvqrm5Wd/73vfijn3jjTc0ZcqU2HZubm5/lAQAQCeBcECN/kY1Bhrjll6/N64tFlwEDz7Hhj/s77da7aa9z4KM9qGnCDMAAAAAAMBw1i8ByYIFC7RgwYLY9tixY7VhwwY9++yznQKS3NxcFRUV9UcZAIAhpn0y8K5CjG6XB9kXCAf6pU7TMLsNKlw2V2yujLj99rZ5NLoaosppc8o0zH6pFQAAAAAAYLgasDlIGhoalJOT06n9/PPPl8/n08SJE3Xvvffq/PPPP+h1/H6//P7939D1er19XisAoG90nBC8R2HGIUKN5mBzv9TZ3jujPbBw2Vxy2uMDjNi6/RC9NGwu2Uxbv9QJAAAAAACAvjMgAcnmzZv19NNPx/UeSUtL0/e//32dfPLJMk1T//M//6MLL7xQv//97w8akjz66KN6+OGHB6JsABiWguFgn4QZ7cuwFe7zGtsnAz9koGE/IPToMMxUx2MJNAAAAAAAAIYfw7Isq6cH33///Xr88ccPesy6des0adKk2PaePXt02mmnae7cufrZz3520HOvueYabdu2TX/729+6PaarHiRlZWVqaGhQRkZGD+8EAIaO9l4aXr+3bdipngw/1WG9/Zz2tv6aR+PAnhhHEmrYTTvzZwAAAAAAgGHLNEx987RvJrqMpOX1epWZmXnI3OCwepD88z//s6677rqDHjN27NjY+t69e3X66afrpJNO0k9/+tNDXn/27Nlavnz5QY9xuVxyuVw9qhcAkln7BOHtwUZ7qHFg0NHlvkD8vogV6fP6bIatUzDRHmC0rx9OLw0CDQAAAAAAACSTwwpI8vPzlZ+f36Nj9+zZo9NPP13HH3+8XnjhBZnmoSeXXbVqlYqLiw+nJAAYUOFIWE2BpiMKM9qP7Y+eGi6bq8+GnmLYKQAAAAAAAAxl/TIHyZ49ezR37lyNGjVK3/ve91RVVRXbV1RUJEl66aWX5HQ6NWPGDEnSb3/7Wz3//POHHIYLAA5Xd0NQddtrI9A5zGg/rinQ1Of1OUxHfKgRXe8YWMTaDgxAOhzrMB300gAAAAAAAAB6qF8CkuXLl2vz5s3avHmzRowYEbev45QnjzzyiHbs2CG73a5Jkybp17/+tS655JL+KAnAIHTgEFTd9cQ4VK+N/pgo3DTM7oMLuzOuLS7I6HhOdJ9pHLqHHQAAAAAAAIC+dViTtCejnk62AmDg+EP+WDjR4G9oW/oa4rZjbR16axwYegzIEFS97K1hN/slXwYAAAAAAAAOiUnaD65fJmkHMLSFIiE1+hsPHWp0DD662NfXwYbdtPdJbw2GoAIAAAAAAADQjoAEGAIiViQ2cXh7SHHI3htd7GsJtvRpXZ16ZNhdSrGlxEKNFHtKp/1d9dZgCCoAAAAAAAAAfY2ABEig9snDjyTUaB+WylLfjZZ3YI+NuCDjgDCjq5AjxZ7C3BoAAAAAAAAAkhoBCdBLB5tno1NboOt9Xr9XoUioz2rqOHF4d70z2ntxdBl0RNdtpq3PagIAAAAAAACAZERAgmHJH/Kr3levBn+DGnwNB112dVxfz7NhyOg2yOhyOKpuQg67aWeODQAAAAAAAADoAQISDDr+kP/QgUZ7WzfH9WW4ceA8G1323DjEcFRMHg4AAAAAAAAAA4uABAMqEA4cPNA4cNnFcX0Zbhw4HFX7MFOdtm1dtzPPBgAAAAAAAAAMTgQk6LFgOHjoQKNDsNHVcb6Qr8/qcdqccYFFxzk0DhZsdDyOXhsAAAAAAAAAMDwRkAwT7eFGb+bbaF+2hlr7rJ4Dw424OTUOCDa66t1Bzw0AAAAAAAAAwJEgIBnCfr/+97p12a1q8DeoJdjSZ9dtn3Oju2Cj22GqOsy/QbgBAAAAAAAAAEgkApIhbl/TvrjtVEeqMlwZSnelK8OVoQxXhjJdmbH1uIczfjszJVPpznTZTFuC7gYAAAAAAAAAgL5BQDKEzR09VytvXqlMV6YyU9pCELvJWw4AAAAAAAAAAJ+WD2FZKVk6tujYRJcBAAAAAAAAAEDSYSIIAAAAAAAAAAAw7BCQAAAAAAAAAACAYYeABAAAAAAAAAAADDsEJAAAAAAAAAAAYNghIAEAAAAAAAAAAMMOAQkAAAAAAAAAABh2CEgAAAAAAAAAAMCwQ0ACAAAAAAAAAACGHQISAAAAAAAAAAAw7BCQAAAAAAAAAACAYcee6AKOlGVZkiSv15vgSgAAAAAAAAAAQKK15wXt+UF3Bn1A0tjYKEkqKytLcCUAAAAAAAAAACBZNDY2KjMzs9v9hnWoCCXJRSIR7d27V+np6TIMI9HlJB2v16uysjLt2rVLGRkZ1JKEtSRbPdQyOOqhluSvJdnqoZbBUQ+1JH8tyVYPtQyOeqhlcNRDLclfS7LVQy2Dox5qGRz1UEvy15Js9VALDsWyLDU2NqqkpESm2f1MI4O+B4lpmhoxYkSiy0h6GRkZSfMHlFq6l0z1UEv3kqkeaulaMtUiJVc91NK9ZKqHWrqWTLVIyVUPtXQvmeqhlu4lUz3U0rVkqkVKrnqopXvJVA+1dC+Z6qGWriVTLVJy1UMtOJiD9RxpxyTtAAAAAAAAAABg2CEgAQAAAAAAAAAAww4ByRDncrn0rW99Sy6XK9GlUMtBJFM91NK9ZKqHWpK/Fim56qGW7iVTPdSS/LVIyVUPtXQvmeqhlu4lUz3Ukvy1SMlVD7V0L5nqoZbuJVM91JL8tUjJVQ+1oK8M+knaAQAAAAAAAAAADhc9SAAAAAAAAAAAwLBDQAIAAAAAAAAAAIYdAhIAAAAAAAAAADDsEJAAAAAAAAAAAIBhh4AEAAAAAAAAAAAMOwQkQ5hlWYkuAQAAAAAAAACApERAMsQ0NzersbFRXq9XhmEkupyDSrYAh3pwuJLpPUqmWtC9ZHufkq2edslUVzLUkgw1tEumWjpKprqopXvJVk+7ZKqLWrqWTLVIyVUPtXQvmeqhlu4lUz3U0rVkqkVKrnqopXvJVA+14FAMi3dmyPjiiy909913q6qqShUVFXriiSe0ePFiWZaV8LBk586devPNN1VXV6dp06Zp3rx5Ca2no3A4LJvNplAoJLvdrkgkItNMXHaYLPXs3btXn376qQKBgEaPHq3jjjtuwGtI1nra/0y1LxP5M5NMtSTTe5Rs9STT+5Rs9ezatUtvv/22mpubNXbsWM2fPz8hdSRbLVJyvU/JVEsyvU/UMnjq6cjn8ykQCMjlcsnlcklSwv69nEy1NDU1qbW1VZZlqaCggFo6SKb3iVoGRz3UMjjqSaZakun3XjLVIiXX+5RMtSTb+5RM9VALDpuFIWHt2rVWbm6udffdd1svv/yytWTJEsvhcFgrV65MdGnW6tWrrVGjRlknn3yydfTRR1sOh8N66aWXEl2WZVmWtWHDBuvOO++0Fi1aZN10003Wjh07LMuyrHA4PKzrWb16tTV27Fhr1qxZVl5enjVz5kzrN7/5zYDWkKz1bNq0yfrWt75lXXfdddbjjz9ulZeXW5ZlWZFIZFjXkkzvUbLVk0zvU7LVs3r1amvkyJHWKaecYo0fP94qLS21nnnmmQGvI9lqsazkep+SqZZkep+oZfDU09HatWutiy66yJoyZYp1zjnnWM8++yy1WJa1Zs0a66yzzrImTJhgzZo1y1q6dCm1RCXT+0Qtg6Meahkc9SRTLcn0ey+ZarGs5HqfkqmWZHufkqkeakFvMMTWEFBbW6u7775bixcv1pNPPqkrr7xS3//+93XyySfr+eefl5S4Llzbtm3TwoULdfnll+vNN9/UX//6Vz3wwAN66qmnVF5entCuZWvWrNFJJ52kxsZGORwObdq0SZdccolqa2sT8q3YZKlny5YtOuecc3TJJZfoL3/5i15//XVNmTJFr732msLh8IC/Z8lUz+eff645c+Zo06ZN2rp1q/7whz/ozjvvVHNz84Cn/8lUSzK9R8lWTzK9T8lWT8e/H5YvX67ly5fr+uuv1+9//3vV1dUN6PuUTLVIyfU+JVMtyfQ+UcvgqaejL774QqeeeqqKi4t16623KjMzUy+//LI+/fTTYV3LunXrdOqpp2rKlCn6zne+ozPPPFNvvPGG/vCHPwzrWqTkep+oZXDUQy2Do55kqiWZfu8lUy1Scr1PyVRLsr1PyVQPtaDXEpPLoC+Vl5dbs2bNst59913Lsvb3Nrj++uutxYsXJ6yuQCBgPfjgg9YFF1xgtbS0xNr/8pe/WEVFRdbevXsTVtuePXusY4891rr33ntjbe+88451zDHHxF7H4ViP3++3lixZYl166aWW3++Ptf/85z+3cnNzrerq6gGrJdnq2bVrlzVlyhTr/vvvj7W9+OKL1jHHHGNt2bJlwOpItlqS6T1KtnqS6X1KtnqCwaD1zW9+07rgggus5ubmWPuyZcusrKwsa9euXcOyFstKrvcpmWpJpveJWgZPPR1VV1dbp512mvX1r3891lZTU2ONGjXKeuKJJ4ZtLbW1tdb8+fOtO++8M9bm9XqtWbNmWUuWLBm2tVhWcr1P1DI46qGWwVFPMtWSTL/3kqkWy0qu9ymZakm29ymZ6qEWHAl6kAwBhYWF+uUvf6lTTjlFUtscFpJUWlraqedBU1PTgNQUDoflcDg0depUzZo1S263O7Zv1qxZcjgcqq6uHpBauvLpp58qKytLN954Y+ybjKeddpoikYjWrl07bOuJRCIaMWKEzjzzTDmdzlgtJ510ktLS0hQMBgesFkkKhUJJU8+7776rsrIy3XLLLYpEIpKkyy67TPX19fr8888HrA7LspKmFql3PzNWP357uDc/M/1VTzK9T8n2c2Oapo466iidccYZ8ng8sfZZs2YpPT1djY2Nnc7pr/fJsqykqUVKnp8bfma6l0w/M8n0urRfO5nq6WjHjh0qLCzUokWLJLX9fZGTk6NzzjlHNTU1khT7Oe/vupKpltraWuXn58fmiAmHw0pPT9fChQtVUVERaxtutUjJ9T5Ry+Coh1oGRz3JVEsy/d5Lplqk5HqfkqmWZHufkqkeasGRsCe6APSNCRMmSGr7pexwOCS1/QGrrKyMHfPoo4/K5XLpzjvvlN3ef2/9qlWr9OCDD+rVV1/VwoULlZKSEqvHMIzYc3f8oPKDDz7Q7Nmz+62mA40dO1Y33HCDJk6cKEmxCdHT09O7/AC1vyejHTdunG688caE15OSkqILL7xQY8aMiWvPysqSw+GIq2XlypWaMWNGn9cgSfX19cr6/+zdeVxUZf//8c+ggooKriCKqamh5o4LemsuJC6ZmpaaWpll3bmk5r6VZWZmd2paWnd32Z3b3WaWZfW10rtudwUDzV1DBVxIEBQE5vP7g9+cGAW35swcnNfz8fBRnDnMvLnOZ86ZOde5zhUYKCVLlpQ+ffpItWrVPJpHRCQ4OFj69u0rd9xxh4jkHsxsNpv4+flJRkbGVeubtY1sNptUrlxZHnzwQY9nEbm1mjHjtjx/pWbMuk2QVWpGxHp14+PjI1FRUVK+fHkR+fP44O/vL0WLFpXLly8b627evFkiIiJcvp3OnDkjFStWlGLFiknXrl2lbNmyHsuSl1Xqhpq5mhVrxgrtImLNtrlSlSpVpHfv3sYFRUWKFDEyOj4v561fM3I52qNq1aoez+JQrlw5GTx4sHTu3Nnpde12u/zxxx9uyeLYd1SoUMHjWfKiZvJnhXZxvB5tczUrtosIbVMQ9sEFo2byZ4Wacbye1erGCm1jxXbBjWEEyW3Gx8fHqefR8YabMWOGTJ06VTp16mRq50hMTIy0bt1a6tWrJyVKlDA6RxwnVbKysiQtLU1ycnKMKwunTJkiERERcubMGdNyXalu3boyePBgEcndQTnaJDAw0OnL+2uvvSbHjx835YTPoUOHZPv27UaeQYMGeSRPQkKCbNu2TdavXy92u9040e3YZiIiKSkpxk5cJLeeOnXqZFwt4UrR0dHSo0cPiY6OFhExTnQ7Ppy4O49D+/btZejQoSKSu42KFCkifn5+UrFiRaf33LvvviunTp1yec38/vvvsm/fPiPL448/7rEsf7VmXH11xF+tGbOu1vB0zYhYq27i4+Plu+++k3//+9/yxx9/SOnSpUXkz7qx2+2SkpIi6enpxj5w2rRp0qZNGzl9+rRLt1N0dLS0bt1a/vvf/4qIGCdzRcTtWa7k6bqhZvJnpZqxUruIWKttrpSZmWn8NygoSPr37y8izservOuJiLz66qsya9Ysl2fZv3+/fPjhh3L58mWpVKmSkSXvscpdWS5duiR2u10yMjKkbNmyxpf3K9slOztbRHK34/Tp02X48OEuz7J37155+eWXJSMjQwICAowsV7aLO7KIUDMFsVK7iNA2BbFSu+R9HdrGGfvgglEz+bNSzYhYq26s1DZWahfcPDpIbkOOL5pFixaV0NBQmTdvnsydO1d27NghjRo1Mu119+zZI23atJERI0bIq6++aiy/fPmy0cNetGhR4//9/PzkpZdekjfffFO2bt0qFStWNC3bgQMHZOLEiTJkyBCZP3++HDp0KN/1cnJyjGFuM2bMkIkTJ0pKSorL80RHR0uzZs2ME7oOqup0gsnsPHv27JGIiAgZPHiw9O/fX+rXry8rV66U5ORkKVKkiFFLNptNfHx8pFSpUjJr1iyZN2+efP/998YVq64SExMjLVq0kIiICGncuLHTY3lPoLgjz6FDh2TOnDkyefJkWbFihVy8eNHp9R1ycnKMA9z06dPlqaeektTUVJflEMkd6RAeHm7cbs3x+vnVi9lZXFEzrrw6whU146o8VqoZEevVTYsWLWTcuHEyYsQIady4sbz22mty4sSJq+rGZrNJqVKlZPbs2bJgwQLZtm2bVKpUyWXbKSYmRlq1aiUPPPCAcRWYQ96h8e7IImKtuqFm8melmrFSu4hYq22uFBcXJwMGDJB7771XevbsKZs2bTJOYhQpUsTIV6FCBaOTacqUKTJjxgzp0aOHS7PExMRI3bp1JSUlRXx9fUXkz/bJ+/e7I0tsbKz06NFD2rRpI+Hh4fLRRx/JyZMnRUScaqhcuXLi5+dnZJk3b54MGTLEpVliYmKkQYMG4uvra1xUZbfbrzqR4I4sItRMQazULiK0TUGs1C4itE1B2AcXjJrJn5VqRsRadWOltrFSu+AWXTUrCW4bs2bNUpvNpgEBAbp9+3ZTXyshIUGDg4M1KipKVVWzs7N19OjR2r17dw0LC9M33nhDf/vtN1VVzcjI0LvvvlsjIyPV19dXd+zYYWq2uLg4DQgI0C5dumifPn00ICBAIyMj9d133zXWcUzmHBERoUuWLNEFCxaon5+f7ty50+V5oqOjtWTJktecmOny5cum5zl9+rSGhYXplClT9PDhw3ry5Ent16+f1q1bV59//nk9ffq0sW5SUpI2adJE+/XrZ9o2i42N1RIlSuiMGTNUVdVut+u5c+f0yJEjV61rdp7Y2FgNDAzUe+65R9u1a6dFixbVPn366Pr16411srKyNDMzU+vUqaOffPKJvv7666bUTHR0tPr7++uYMWMKXCc7O9stWaiZa2exSs2oWqtukpOTtWnTpjphwgRNSkrSnJwcfe6557Rly5b6yCOP6LFjx4x1L126pI0aNdKoqCj19fV1+bErLi5Oixcvri+88IKq5tbMiRMnNDo6+qp1zc6iaq26oWbyZ6WasVK7qFqrba504MABLVOmjA4bNkzHjx+vffv2VZvNps8//7weP37cad3x48friBEj9MUXX9TixYu7/PgQExOj/v7+On78eKfldrtdVXPfV+7KcvjwYS1btqwOHz5c33zzTR05cqSWLVtWhw0bdtVrvf766/rggw/qzJkz1c/Pz+3t4s4sqtRMQazULqq0TUGs1C6qtE1B2AcXjJrJn5VqRtVadWOltrFSu+DW0UFyG9u+fbvabDaNi4sz/bUSEhK0d+/eGh4ermvWrNEuXbpop06d9LnnntPhw4drjRo1dOjQoXr06FGNj49Xm82mfn5+GhMTY2quzMxMHTRokD755JPGsoMHD2q/fv20VatWumDBAqf177//fg0MDFR/f3/dtm2by/McOHBA/fz8dOrUqaqa2xGydu1afeedd/SLL77QtLQ0t+WJi4vT6tWrX7VDnjhxojZo0EDnzp2r6enpqqq6d+9etdlsWqJECd29e7dLc6iqnj17VmvVqqVNmjQxlg0ZMkSbNWumlStX1nbt2unu3buNA4yZeS5evKj33XefDh8+3Fi2c+dODQ8P18jISP3ss8+c1u/QoYPWqlVLS5Ys6fITPvv27dOSJUvqlClTVDX3ROlPP/2kn3/+uW7atOmq9c3MokrNFMRKNaNqvbo5fvy43nHHHfp///d/TsvffPNNjYiI0GeeeUbPnDmjqmocH3x9fV1+fDh//ry2bt1aQ0NDjWX9+/fXBg0aqL+/v9arV08//fRTo4bNzKJqrbqhZvJntZqxSruoWq9trjRt2jTt3Lmz07KFCxdq+fLldeLEiZqYmGgsHzNmjNpsNvX393f5l9T9+/dr6dKlddiwYaqqmpOTo0uWLNHx48fr+PHj9eDBg07rm5lFVXXevHnarl07p2XLly/Xhg0b6iOPPKK//vqrsfzll19Wm82mpUuXdnmWI0eOaNmyZfXhhx9W1dx2mTNnjj7xxBP60EMP6aZNmzQnJ8ctWRyomfxZpV1UaZuCWK1dVGmbgrAPLhg1kz+r1Iyq9erGKm1jtXbBreMWW7ex8PBwuXDhgtSrV8/01woODpbFixdLvXr1ZMCAAZKTkyOrV6+WefPmyaJFi2TWrFny6aefSlxcnFStWlXeeOMN2bVrlzRs2NDUXL6+vpKUlOR0m5BatWrJ3LlzJSwsTD755BP58ssvjfVLlCghGRkZsmXLFmnevLlLs2RnZ8uiRYukVKlSxq2AevXqJdOmTZPZs2dL7969ZciQIbJ792635MnKypLs7Gzjdi6XLl0SEZE5c+ZIhw4d5O233zZuRVa2bFl55plnZNeuXVfdxsgVypcvL126dBF/f3954YUXpEWLFpKQkCBPPfWUvPXWW5KVlSW9evWSw4cPm56nRIkSkpycLBUqVBCR3GGRTZs2lX//+9+SnZ0t77zzjsTExBiP2e12SUhIkC1btkh4eLjLcmRlZcmUKVPE399f7r//fhEReeCBB+TZZ5+Vp59+Wjp16iQjRowwJoUzM4tDZmampWqmc+fO1EweqiqXL1+2XN34+PhIyZIl5dSpUyLy5z1XR4wYIQ888ID8+OOP8ssvv4hI7pDj2bNnS0xMjMuPDwEBAdKrVy+pXbu2PProo8Yxcvr06fLLL7/IXXfdJWPHjpX//e9/pmcRya2bc+fOebxucnJyZMqUKVKyZElq5gpWqxmbzSYlSpTweLuI5LZNz549pVatWpZomys5jk8if7bTyJEj5eWXX5ZFixbJ559/bjxevXp1qVmzpmzdulWaNWvm0hzbtm2TtLQ0CQsLk2PHjknHjh1l+fLlsmnTJvnpp5/k7rvvlnXr1rkli0NqaqqkpaUZtwp5+OGHZfr06bJ582ZZtWqVcWvXevXqSYMGDWTz5s0uzxIXFyf+/v5SsWJF2blzp0RGRsq3334rCQkJkpqaKvfcc4+8/fbbxvpmZnGgZvJnlXYRoW0KYrV2EaFtroV9cP6sUjNbtmyhZgpgxbqxQttYsV1wizzdQ4Pby8mTJ3Xy5Mm6YcMGVXUeUlarVi1jyFneYYlmyc7O1suXL+uQIUO0b9++mpGRoXa73ei9PXz4sEZERGi/fv2M3/nvf/971RBOVzpw4IAOGzZMW7VqpaGhodqtWzfdt2+fXrx4UXfs2KFVqlTRRx55xFj/559/NjVP8+bNtUOHDsbPGRkZxv+Hh4dr//79jZ8vXbpkSoa8veljx47VoKAg7d69u9NVIqqq9evX10cffdT0PBcuXNAOHTro008/raq5dZSVlaWquSMoqlatqs8++6yq5tb3qlWr8r2lkyvs3LlTo6KitHPnzhoWFqZdunTRXbt26fHjx3XdunXq6+urkydPNjXLqVOnnEahhYeHe7RmTp065XT18ZgxYzxWM47aTU1N1Q4dOujf//53VfVczTj2qzt27NCoqCiNioryWN2kp6cbty5UzR0N16RJEz1//ryqqtE+qqpdu3bV9u3bGz87bjHoyiwXL140fl64cKHWq1dPO3furCdPnnRat23btk5Xr7k6i2rulfTbt2/X7Oxsj9dNfHy8Hj16VPfu3evxmrnSfffd57GaudL8+fM9VjM5OTlOx8kHH3xQGzRo4LF2ycnJcXrepUuXap06dTz2firIggULtHTp0kamvPujmTNnaqlSpYzPVydOnND4+HjTssyfP19DQkK0WrVqev/992t8fLxmZGTopUuX9Omnn9bAwEA9ceKEW7KsXr1aS5Qoobt27VJV53Z5++231dfXV2NjY1U1d6RmUlKSaVlWrFhhjPp0HMMdNfLSSy9p8eLFdd++fW7Jopp7bLBKzSxYsMAyNWOl95Kqtd5P1EzBaJv8sQ92lvfuGZ6umQsXLhj/b6WaWblypWVqRlX1o48+8njdOKxatcoybWOF9xP+OjpI4HIpKSlOOye73a5nz57ViIgI/fe//23661/Z+fLTTz9pkSJFnG6n5Vjnp59+Uh8fH6fhd2bnOXTokA4ePFi7d+9uzMvisHbtWrXZbFctd4W0tDRNTU3VlJQUY9muXbu0UqVKOmDAAGOZ42TL2LFjtUePHi7Pca08qrlDJT/99NOr7vHZp08f7du3rylZzp07p/v27dP9+/erquqXX36pNptNP/30U1V1PiG0YsUKLVu2rB49etS0LHv37jVqYN++fdqmTRu99957r3rNRYsWaYUKFUzrRDtx4oSWL19ee/furZs3b1ZV1d27d2uFChU8UjP55VFVnTt3rttrZvfu3XrfffcZH+w//vhjj9WMI0/37t2ND/fR0dEeq5tff/1Vu3fvrhs3bjTa58yZM1qjRg299957nY4PqrknO9q2bet0oteMLI5b/aiqLlu2TNeuXWuceHa89qhRo7RTp04uz+EQGxuroaGhxjwfK1eu9FjdxMbGatWqVXX06NGqmntbTk/VTHx8vK5evVo//fRT40uOp2omvyyqnqmZuLg4HTx4sHbo0EGHDBmiX3/9tZ4+fVobNWqkHTp0cGu7XJnn8ccf1zVr1qiq6ueff66ffvqp299P15KZmant2rXTVq1a6dmzZ1X1z07yhIQEDQ0NNd537jB//nxt2bLlVbdS2Lt3r5YvX17Xrl1r6uvnvWCpd+/eGhoaanw5z3uhQ61atXThwoWmZsn7uXjlypV6//33Ox3TVXNv4VaxYkVdunSpqVnyunjxorZv394yNbNw4UKP1IzdbnfaRhkZGR5tlyvzqHqubc6dO+c03156errH2ubKLKq5t1v01H7m4MGDTreD9uT76cosqp5rm4MHD+pnn33mtJ/11D7YkSXvRUOe3Af/9ttvOmjQIOOzZVpamsdqxpEl71xunqqZ9PR0TU5OdtpOPXv29Nhx25Enb2fW8uXLLXPsvv/++z36mSavjz76yDLtgltDBwncYsaMGVq7dm2ng44Z9u/fr/PmzdNTp045LZ83b576+Pg4TcyumnuFft26dU07AVVQnuPHj+s333xjnAhzfHH95JNPNCwsTP/44w+X5oiLi9POnTtrkyZNNCQkRD/66CNVzf3QsXLlSq1QoYL27dtXL1++bJzgGDRokPbv31+zsrLynVzK1Xnyfvm58qSP3W7Xvn37Ok3G7Sq//vqrNmnSRBs0aKDFihXTmTNnakZGho4cOVL9/Pz0yy+/dFr/66+/1rp16xof3FzpyiyOiW9/++03/eSTT66ql0WLFmmDBg1MG03z448/atGiRbVjx476yCOPGCcLV61apWXLltVevXq5rWbyy7NlyxbjsbwfIlXNrZno6GgtUaKETpw40ViWlZWlI0aMUD8/v6s+MJtZM/nlyTvvyieffGK8n9xRN45Jx5966in9/fffnR7bvHmzhoSE6D333KMHDhwwXn/o0KHarVu3q973ZmZRdf4A7TBw4EAdOXKk2u12l9dwdHS0lixZUmvUqKFBQUGakJCgqmrsa7766iun9c2smyuzOI5Rjn2N4wS3O2pmz549escdd2h4eLgGBQVpjx49jM7qzZs3a9WqVd1WM/llyXvBQn6vZ1bN7Nu3T8uWLatDhw7V119/XaOiorRmzZr67LPP6i+//KL169fXNm3auKVdCspTo0YNfe655wr8HTPfT3nt379fJ0yYoI899pjOnz9fDxw4oKqqGzZs0BYtWminTp303LlzxvrJyckaFhZ21fHdjCx79+41Htu5c6dxrHK0R0xMjNatW9eUuXySkpKcPk86jtWxsbHapk0brVGjhtNVr+np6dqkSRNTLmYqKItq7rHKUcOOdjl06JA2bNjQGJHuakeOHNF//OMfOnbsWF21apXx2l9++aVGRES4tWbyy+IQHR3t1prZv3+/Pvvss9q9e3edOXOmcfz56quv3N4u+eXJe8Wtu9vm8OHDWrNmTZ0+fbrTaLmvvvpKW7du7da2KSiLqvvbRTX3Ip0yZcroO++847TcE3VzZZa8+xp3t01MTIxWrFhRn3zyST158qTxmrGxsRoREeHWfXBBWVRzv5e7ex/s+O5is9n0/fffN1573bp1bq+Z/LLkfcydNRMbG6v33Xef1q1bV3v16mV8p/TEcTu/PF988YXxmLuP3b/99ptOmjRJBw0apK+99pru3LnTeM2WLVu6tW2uzJK3E23Pnj1ufz/BdegggalWrlypw4YN07JlyzpdiWmGgwcParly5dRms+nkyZONiUpVc3eQM2fOVJvNptOmTdNdu3bpuXPndNKkSVqrVq2rrsAxO49q/idsx40bp1FRUVeNqvgr4uLitHz58jpmzBhdvny5jh07VosVK2Zsj/T0dF27dq1WrVpVw8LCtFevXvrQQw+pv7+/KSNrCspT0MTZWVlZOm3aNK1cufJVk6K5Ksu4ceM0Li5O582bpzabTU+ePKknT57UJ598UosVK6Zvv/22JiQk6KVLl3TSpEnaqFEjTU5OdksWR6di3g/4Ds8++6z26dPH6cp4Vzp37pzef//9unTpUm3atKk+/PDDxomnNWvWaL169fSuu+4yvWYKyjNw4EDds2ePqjq3j5k1ExMTo/7+/sbtAh2ys7P17NmzOnz4cLfVzLXyXOtEtll1k5aWpp07dzZuGaWae1J19+7dxgfW2NhYrVevntauXVtbtGihPXv21FKlSrl80uZrZcmvo/7SpUs6depUrVSpkikj+BxfvqZMmaJnzpzRevXq6axZs1Q19+TYsGHDtFixYrp06VLT6+bKLPXr19cXX3zR6KTO79hkVs0cO3ZMq1SpopMmTdK0tDT9+uuvNTg4WLdu3Wqs466auZEseZlZMxkZGTpw4EAdNWqU0+s1btxYbTabDhgwQPfs2aMtW7bUmjVrmtou18rTpEkTtdlsxqSUeR8z8/2UV1xcnAYEBGiXLl20T58+GhAQoB07dtQPP/xQVXNHhLZo0UJr1Kih3377rf7www86bdo0DQ4OdvmIqPyyREZG6pIlSwr8nYkTJ2p4eLjLP4fu3btXfX19tW/fvvl+pty2bZu2b99eAwMDdenSpbpy5UqdNGmSli9fXg8fPuyWLPl9rnGYOnWqNmzY8KoLjFxhz549WrVqVe3UqZO2bt1afXx8dM6cOaqaeyz/z3/+Y5y8NLtm8ssyd+7ca/6OWTWzZ88erVSpkvbt21efeuop9fX1NS4yyc7O1tWrVxsnocxul4LyOC4cKohZbaOqumTJErXZbNqkSRN9+eWXjY6J7OxsXbVqldv2M/llcVxwURAz28VxwcXYsWOveiw7O1s//vhjt9XNtbIUxKy2OX78uFarVu2qz+cOe/bs0bZt27plH3y9LPkxcx/s+Bw6YcIEHTdunLZt29Z4P+Xk5Lh1H5xfloSEhGte1GFWzcTFxWnZsmV1+PDhumTJEm3Tpo1xxwa73a7bt2/Xdu3auaVmCsrz8MMPX7NtzKqbuLg4DQwM1AcffFCffvppDQ0N1caNGxsdob/++qvb3k/5ZWnatKkuWrSowN8x8/0E16KDBKaKiYnR7t27G/f+M0taWpo+/vjj+thjj+nixYvVZrPp+PHjnQ5cOTk5umzZMg0ODtYqVapoWFiYhoSEGL3P7siTt5Mk78ElNjZWp06dqmXKlDFO+LrCuXPntHPnzk4nNVRV27dvryNHjnRalpqaqhMmTNAnnnhCR4wY4TTvhDvz5G2X7777Tnv06KHBwcEu72A7c+aMtmvXzrjHv+O1o6KidMuWLbpnzx7dtm2bvvXWW+rr66s1atTQhg0basWKFd2WpUuXLvrLL78YcwE4HDp0SKdPn66BgYGmvbeys7P19OnTWqdOHT1x4oR+9tln2rx5cx06dKjec889+tBDD2lqaqqOGzfO1Jq5Xp4nn3xSW7durX369FFV1fXr15tWMwkJCRocHKxRUVFGptGjR2vXrl21Xr16+uabb+qPP/6oCxcuNL1mrpWne/fuGhYWpm+88YbT1cuHDx82tW4yMjL0b3/7m+7atUuzs7M1KipKmzdvrqVKldKWLVvqP//5T2PdhQsX6qRJk/T555835QRqQVlKly6trVq1csry1VdfaadOnbRKlSqmbKeYmBj18/PTKVOmqGrusahv377arFkzY51Tp07p7Nmz1dfXV2vWrGla3RSUpXnz5sY6eU9aml0zS5cu1fbt2zvt97t166ZLly7VDz74QH/88Udjudk1c60sy5Yt0x9++MFYbnbNqKp26tTJOBno6PCcMGGCPvDAA9qsWTNdvHixqubeAsLMdrlenj59+mjTpk31tddeU1XVdevWaWRkpKlt45CZmamDBg3SJ5980lh28OBB7devnzZv3ty4lcHevXt1wIABWrFiRa1Tp47Wr1/f5Z/9rpWlVatWTrd5VVX95ZdfdNSoURoYGKjR0dEuzZKYmKitW7fWjh07aoUKFfTBBx/Mt5MkOTlZx44dq3Xr1tW77rpLW7Zs6fJtdqNZHNavX6/Dhw/XsmXLFnjhzF9x7NgxrVWrlk6YMMHY17333nsaFBRkvH/sdrtGR0frwIEDTa2Za2VxXIySl5k1c+TIEa1evbox15Sq6gsvvKDPPPOM02jLvXv3av/+/U1tl+vlyW8uIzPbxiEmJkYfffRRnTVrloaEhOhLL73kNMLzwIED+vDDD5veNgVlye/uA2a3y4EDB9TPz0+nTp2qqrnzTK1du1bfeecd/eyzz4zRqLGxsabvg6+V5YsvvnCaX0LV/Lb58ssvtVu3bkaWqVOnaq9evfTxxx/XFStWqGruZ9VRo0aZug++VpYnnnhCly1b5rSu2fvgHTt2aJkyZYzPoStXrtSAgAD9+eefjXXctQ++XpYrO/HNrJmLFy9qr169nM4FfPHFF9q7d29NSEgw9sPuqplr5UlKSnJ6P9ntdlPr5sKFCxoVFaUTJkwwljluu12xYkV99dVXjfVGjx5tattcK0tQUJBx8ZuD2e8nuB4dJDCdGbd6uNLFixd18eLFxtD01atX59tJoqp69OhR3bhxo37zzTfG5FruzHPlSJKjR49qly5dtGbNmi7fcSYmJmqLFi1006ZNqvrngX7IkCE6cOBAVVWniesdrnVVn9l5HOx2ux48eFAnTpxoTGjlSmfPntXZs2c7fQl98cUX1WazacOGDbVatWrapUsXYz6Q1atX66pVq0y5Tdy1sjRu3FhDQ0M1KipKf/75Zz106JD27NlTq1evbuqB1nGScODAgbp+/XpVzT3xVaFCBS1VqpTTCWZV82rmRvKULl3aGBJ98OBBnTBhgik1k5CQoL1799bw8HBds2aNdunSRTt16qTPPfecPvPMM3rnnXfqE088oWlpaRoTE2NqzVwvz/Dhw7VGjRo6dOhQPX78uMbFxZleN4mJiVqxYkX97rvvdMyYMRoVFaUxMTH6zTff6Pjx4zU4ONj4Umi2G8ny8ccfq2ruKLqXX37ZtJPL27Zt0+nTp6vqn++T3377TQMCAq662sjsurlWlrfeestpXXfUzJIlS7RmzZrGF5hZs2apzWbTyMhIDQ8P10qVKl11yw6zXCtL8+bNtVKlSsZ+xsyasdvtmp6erm3bttXBgwcbJ5hOnDihd9xxh/7rX//SQYMGadu2bV3+2n8lT4cOHVTV/PfTle69914dNmyYkVU192rZxx57TNu0aaNff/21se6+ffv05MmTV30Oc0eWtm3bGrfKiI+P11mzZmnTpk1NGfHzzTff6MMPP6zbt2/XrVu3arly5a7ZMXHixAn9448/XH5715vNcuHCBZ0/f762atXKpRcLOeTk5OicOXO0S5cuev78eWO5YxRHfjVrVs3cbJYTJ06YVjPZ2dn62muv6d///nen7fLEE09oRESENm/eXIcNG+a299KN5Hn66aeN99OpU6dMfT85REdHa+3atdVut+vMmTM1NDRU58+frz179jSOq6rm72eulaV3795Gp5LZ+5msrCwdNWqUli9f3vg81a1bN23YsKFWr15dfXx89IEHHnB6L5vVNjeS5cEHHzSO72a3jWrupOKtWrVSVdXIyEht3769Pvvss3rvvfdqo0aNjJPyqubug6+XpXHjxkbNXLx4URcsWGDaPjgtLU39/f2NefgcOnXqpB07dsx3/jSzauZms5i5D1bNPSa0bdtWZ86caSwbN26cVq9eXatUqaLt27d36jA2u2aul6djx446adIkVc0912fmsTs9PV2bN29ufId0jGZ/8MEHtVOnTtqqVSv95ptvjPVPnjxpWttcL0vr1q2NY2Vqaqqp7yeYgw4S3DbyThylmjtPgs1m03HjxhkH1aysLNMmmb2ZPI4rjhxXxR89etS0XHlPujuuupo2bZoOHjzYab28X0LMvFf4jeZxHHCunJjRlVJTU43/d0yWvHr1aj137pz+9NNPGh4ebtxewGzXyrJx40Zt3ry5zpw5Uy9fvqw//PCDqRN+5/XII48YH4CGDh2qZcuW1Xr16unjjz/uNAGZmTVzo3kcEzKaWTOnTp3SRx55REuUKKH33nuv09WDH330kQYEBJh2L+6bzbN8+XINDAw0PjT++OOPptaN3W7X/v3764gRI/S+++4zOrJUc7+MDho0SJ9++mnNysoyTs6bVTc3kuWpp57K90pUs9ntdj1//rxxazpHe5jdyXgjWbKzs40cmZmZptfMkSNHtHXr1lqrVi3t06eP2mw2XbNmjdrtdk1KStJRo0Zp+/bt9cyZM6bXzI1mMeMWJfn5+eef1cfHR9u1a6eDBw9Wf39/feKJJ1Q191YCpUuX1n379l3z1mjuzFOqVCmnEWtmy87O1suXL+uQIUO0b9++mpGR4XTBx+HDhzUiIkIfeugh43fMaqMbzdKvXz8jR2JiomnzUp0+fdpp9NXmzZuNjom8J+PzOxnlqSwOdrvdlNtROmzcuNH4DOGQk5Oj1atXd8rpDjeb5fTp06addI+Pj3f6TPfSSy9pkSJFdOrUqbpw4UJt3ry5duzY0bgNjtn7mxvN49gfm/l+yqtz587GMXHu3Lnq7++vAQEBTp8x3HUsLyjLt99+q6q52yghIcHUdjlw4IAOGzZMW7VqpaGhodqtWzfdt2+fXrx4UXfs2KFVqlRx+n5n9vfL62V55JFHjBxm18z333+vHTt21H/+85967733Ghdlnj9/3uiwyO82wZ7K4jh+Z2RkmHbSXVWdPlM6Pr+8++67WqdOHWOESE5OjlErZtbMjWZxMKtmcnJyNCUlRaOiorR37966ePFinTx5spYoUULff/99/eabb3TmzJnatGlT/eyzz67K5ck8jo5qs+rG8Rk8JCTEGKmsmnuMqFevni5btkwbNmxofB51/I4ZbiVLZmamqe8nuB4dJLjtZGdnGztGx4nm8ePH68mTJ3XMmDH6wAMPaFpamttO6F4vT69evUybZDuvvAfSqVOnGrflUVWdPXu2vv766275snyjeebNm+fWPMeOHbtq6G737t31vvvuc1uG62Xp0aOH2zI4avaDDz7Q559/Xv/+979r5cqV9ciRI/rZZ5/pnXfeqU8//XS+E117Ks9TTz3llvfSyZMndfLkycZEa3n3JbVq1dJx48aZnuFm8tzMPYf/qu3bt6u/v7/abLarJqt/7rnntF27dm7b91opS34+/fRTtdlsTrcV8MYsR44c0dWrV+vzzz+vffv2dXpszpw52qhRI7e8r62WRTV3xM+gQYP0iSeeMG6ppZp7m4O6devme4L5ds9zZQf4Tz/9pEWKFHG6hZVjnZ9++kl9fHxMvRXlzWYxa56ugi4McHzW2rJli9PojcuXL+tbb72l3333nSWyLF682JQs18rj2P/n5ORojRo1nF7///7v/0zpDL2VLN99951pIzXyc/bsWR09erTTFbl79+5Vm83mtMwKefKOanFHlvbt2xu3JBo6dKiWKVNGg4ODde7cuVdNlu7JLGbdISG/PIcOHdLBgwdr9+7drxr5tHbtWrXZbLp//37LZDFrdOOVWfbt26chISFar149jYyMdHrs999/15IlS5o2qvpWsixfvtyULFfmye9z94ULFzQ0NFSHDx9uWoa/ksXMiyvy2rJli3bp0kUffvhhveuuu/S9994zHktMTNRq1arpK6+8YkoWq+W5MsuiRYvUZrPp448/rtOmTdNSpUoZtzT9+OOPtXr16nr27FlTOo6slAXmo4MEt6W8V+6tWrVKixUrpnfddZcWLVrUI/f/u1Yes+/RfWUO1dwOia5du6qq6vTp09Vms5l2z97ClMchJydHL126pP369dOXX37ZYzmskGXjxo1qs9k0ODhYd+zYYSz//PPP9ciRI16bJyUlxen2gXa7Xc+ePasRERGmfsm4lTwfffSRW7Ns2rRJbTab3nfffU4nJkeNGqVPPPGEW0dtWCnLlTIzM7Vz5846cOBAvXjxosdyWCXLu+++q927d3eq4zFjxmjPnj2vGpHpTVny+2I+btw4bd++/TXncrgd8+zfv1/nzZt31SSX8+bNUx8fH3333Xedlu/cuVPr1q1ryiiowpDlSo5bXD300EM6ZMgQLVasmB46dOi2zVJQnrw1nJWVpWlpaVqrVi3dsmWLqqpOnjxZbTaby094Wz1LXo5R3I7vL3v27NGmTZuadpsQK+XJL4vjs8LEiRP13//+t44cOVJDQkL0yJEjOnv2bC1ZsqS+/vrrLh/BbKUsBeVRzb2V4DfffGNkc9T1J598omFhYaZcQV0Ysnz11VdatGhRrVSpkv7vf/8zlmdmZmrHjh2dRh7djlmulcfBUaeLFy/WO++80+m7nTdmSUtL0+zsbI2IiNDVq1cbyy9fvqz33nuvcXGKqzttrJQnvyw5OTn6wQcfaPPmzbVLly7GvCOquXPxNWnSxJSOLCtlgXvQQYLblt1uN3ZOHTt21HLlynn0/n9WyOPopHn++ed12LBh+tprr6mfn59pkwgWtjx5TZ8+XatVq5bvRJnelOXy5cv63nvvGfdb9fQB32p58poxY4bWrl3btDlHbpYn82zcuFFDQkK0RYsWOnToUB08eLAGBASYdvV0YclypVdeeUXLlCmjCQkJno7i8SxxcXEaEBCgc+fO1Q8//FAnTJiggYGBHjluWylLXnv27NFnnnlGy5Qp49GLCDyR5+DBg1quXDm12Ww6efJkpyvq09PTdebMmWqz2XTatGm6a9cuPXfunE6aNElr1arl8pEAhSVLfn7++We12Wxarlw5l3/WslKWG83juAjFcTLsxRdfVH9/f+OWnd6WpaDb2kyZMkVbtmxpyqgaK+W53nb617/+pTabTStXrqzbt283lr/66qsu/4xupSw3kqegzvOoqCiXd54XpiwrV65UHx8fjYqK0pUrV+rBgwd10qRJGhISor///vttm+VG8uTluA1a3tGp3pglJydH09LStGXLljp9+nT9448/9MKFCzp9+nTjzgm3c57rbadLly5ddfeKESNGaN++ffXSpUsuPS9gpSxwHzpIcFvLzs7WMWPGqM1mM3XivsKWxzH5bEBAgNOHavKo/uc//9Hhw4dr+fLl3Tq6x8pZrDZE1Gp5Vq5cqcOGDdOyZct6vGaslOe3337TadOmaWRkpP7973/3aIeElbKo/vnlPTk5WZs1a+a2OYWsnuWHH37QO++8U2vXrq3t27f36HHSSllUc+/v/Nlnn2n//v09nsXdedLS0vTxxx/Xxx57TBcvXmzcqjTvydGcnBxdtmyZBgcHa5UqVTQsLExDQkJcfuK9MGQp6MRPZmamPv3001q6dGmNi4u7bbPcSp4mTZpo8+bN1dfX1+WfQwtzlri4OJ02bZqWKVPGlPe5lfLcSJb9+/frtGnTjLsRmPV51EpZbjRP3pOBsbGxOnXqVC1TpozLLywobFlUc2/ZFxERoUFBQRoWFqZ16tRx+edzK2W5mTx5Pfroo3rXXXfp5cuXXXpyuTBmWb16tdpsNq1Tp462bNlS77jjDo9uJ3fkudn39r59+3T06NFaunRpj+9nzMwC96KDBLe17Oxs/ec//+mR22rlxyp5tm/frjabzZQvpbfCSnliY2P1oYcecutks4UhCwoWExOj3bt3N+0+9zfLank8NQF5fqyURTX3w7W7b9lUEKtkOXfunCYmJlpiUkMrZVHN7ZSwwjZycFeeixcv6uLFi3XVqlWq+ucX9Ss7JlRzJ13duHGjfvPNN6bch7+wZMnvxM+2bdu0fv36Lh+RYLUsN5MnOztbz507pwEBAVqkSBFTTmwUxiyqubcq6t27t9atW9e0EWJWynOjWRy3+1I1bxSzlbLcTB7V3P1ely5dtGbNmqZ83y2sWc6ePasHDhzQ3bt3mzKnkJWy3GweR+1u2bLFlBEShTXLzz//rLNmzdIlS5aYdvGSlfLcTJbU1FRduHCh3nPPPR5/b5udBe5FBwlue1Yb3maVPFY6yaJqrTyenJfgSlbKgoLlnavACqyWBwD+iis/I6xatUptNpuOGzfO+LKalZWlx48fJ8v/z3L27FlVze0Ydtw+JTk52Suy3GierKwsPXPmjK5fv97UiwoKW5bs7GxNSkrS+Ph4jY+PNy2L1fJcK4ujAzQnJ8ctc95ZKcv18uTdTqdPn9ajR4+auv8rbFmysrLcMjrXSlluNE9OTo4ePnyYLFd8hrh8+bJpnVdWznMzx4OsrCyPf6ZxVxa4Dx0kAAAAACwvOzvbuNBk5cqVxhV9J0+e1DFjxugDDzygaWlpbrkYpTBl6dWrl168eNH0HFbLciN5evfu7XQlPln+3E6XLl1ySxar5bmR97ZVtpM7s9xIHittJytlsdLxwJ1ZbjRPenq6ZdrGKll69+5tqe3kzjxW+hxhpSwwHx0kAAAAAAoFu91u3Cpv1apVWqxYMb3rrru0aNGibr+9QWHJ4u75qKyU5Vp5ihQpYpntZKUsVttOVqthK20nT9zSpbBsJytloWask4cshSNPYXlvW2H+UbiOTVVVAAAAAKAQcHx9sdls0qlTJ4mOjpaffvpJGjRoQBayWD4PWQpHHrIUjjxksX4Wq+UhS+HIQxa4nTt7YwAAAADgr8rOztYxY8aozWbTmJgYspClUOUhS+HIQ5bCkYcs1s9itTxkKRx5yAJ38vF0Bw0AAAAA3Kz69evLrl27pGHDhp6OQpZCkEXEWnnIUjAr5SFLwayUhyzWzyJirTxkKZiV8pAF7sIttgAAAAAUOqoqNpvN0zFEhCwFsVIWEWvlIUvBrJSHLAWzUh6y5M9KWUSslYcsBbNSHrLAXeggAQAAAAAAAAAAXodbbAEAAAAAAAAAAK9DBwkAAAAAAAAAAPA6dJAAAAAAAAAAAACvQwcJAAAAAAAAAADwOnSQAAAAAAAAAAAAr0MHCQAAAAAAAAAA8Dp0kAAAAAAAAAAAAK9DBwkAAAAAAAAAAPA6dJAAAAAAAAAAAACvQwcJAAAAAAAAAADwOnSQAAAAAAAAAAAAr0MHCQAAAAAAAAAA8Dp0kAAAAAAAAAAAAK9DBwkAAAAAAAAAAPA6dJAAAAAAAAAAAACvQwcJAAAAAAAAAADwOnSQAAAAAAAAAAAAr1PU0wH+KrvdLqdOnZLSpUuLzWbzdBwAAAAAAAAAAOBBqioXLlyQkJAQ8fEpeJxIoe8gOXXqlISGhno6BgAAAAAAAAAAsJD4+HipWrVqgY8X+g6S0qVLi0juH1qmTBkPpwEAAAAAAAAAAJ6UmpoqoaGhRv9BQQp9B4njtlplypShgwQAAAAAAAAAAIiIXHdaDiZpBwAAAAAAAAAAXocOEgAAAAAAAAAA4HXoIAEAAAAAAAAAAF6n0M9BAgAAAAAAAADAjcjJyZGsrCxPx8BfVKxYMSlSpMhffh46SAAAAAAAAAAAtzVVlcTERDl//ryno8BFAgMDJTg4+LoTsV8LHSQAAAAAAAAAgNuao3OkUqVKUrJkyb90Uh2epapy8eJFOX36tIiIVK5c+Zafiw4SAAAAAAAAAMBtKycnx+gcKV++vKfjwAVKlCghIiKnT5+WSpUq3fLttpikHQAAAAAAAABw23LMOVKyZEkPJ4ErObbnX5lThg4SAAAAAAAAAMBtj9tq3V5csT3pIAEAAAAAAAAAAF6HDhIAAAAAAAAAAAqRY8eOic1mk+joaE9HuSHt27eX0aNHezrGVZikHQAAAAAAAADgdapPWufW1zs2p7tbX68wSUhIkOeee0527Nghhw4dklGjRsn8+fNNf11GkMClqk9a5/YdCwAAAAAAAACg8MrMzJSKFSvKtGnTpFGjRm57XTpIAAAAAAAAAACwGLvdLnPnzpVatWqJn5+fVKtWTV5++WWndY4cOSIdOnSQkiVLSqNGjWTz5s3GY+fOnZMBAwZIlSpVpGTJktKgQQNZuXKl0++3b99eRo0aJRMmTJBy5cpJcHCwvPDCC07r2Gw2+ec//ym9e/eWkiVLSu3atWXt2rVO68TGxkrXrl2lVKlSEhQUJIMHD5azZ8/e8N9avXp1WbBggTzyyCMSEBBww7/3V91yB8mmTZukR48eEhISIjabTdasWVPguk8//bTYbLarhsQkJyfLwIEDpUyZMhIYGChDhw6VtLS0W40EAAAAAAAAAMBtYfLkyTJnzhyZPn267N27V1asWCFBQUFO60ydOlXGjRsn0dHRUqdOHRkwYIBkZ2eLiEhGRoY0a9ZM1q1bJ7GxsTJs2DAZPHiwbNu2zek5li1bJv7+/rJ161aZO3euvPjii/L99987rTNz5kx56KGHZM+ePdKtWzcZOHCgJCcni4jI+fPnpWPHjtKkSRPZsWOHrF+/XpKSkuShhx4ysXVc45Y7SNLT06VRo0ayePHia673+eefy5YtWyQkJOSqxwYOHChxcXHy/fffy1dffSWbNm2SYcOG3WokAAAAAAAAAAAKvQsXLsiCBQtk7ty58uijj8qdd94pf/vb3+SJJ55wWm/cuHHSvXt3qVOnjsycOVOOHz8uhw4dEhGRKlWqyLhx46Rx48ZSs2ZNGTlypHTp0kX+85//OD1Hw4YN5fnnn5fatWvLI488IuHh4bJhwwandR577DEZMGCA1KpVS2bPni1paWlGR8uiRYukSZMmMnv2bAkLC5MmTZrIv/71L/nxxx/lwIEDJrbSX3fLk7R37dpVunbtes11Tp48KSNHjpRvv/1Wund3noBm3759sn79etm+fbuEh4eLiMibb74p3bp1k3nz5uXboQIAAAAAAAAAwO1u3759kpmZKZ06dbrmeg0bNjT+v3LlyiIicvr0aQkLC5OcnByZPXu2/Oc//5GTJ0/K5cuXJTMzU0qWLFngczie5/Tp0wWu4+/vL2XKlDHWiYmJkR9//FFKlSp1Vb7Dhw9LnTp1buAv9oxb7iC5HrvdLoMHD5bx48dL/fr1r3p88+bNEhgYaHSOiIhERkaKj4+PbN26VXr37m1WNAAAAAAAAAAALKtEiRI3tF6xYsWM/7fZbCKSe25eROS1116TBQsWyPz586VBgwbi7+8vo0ePlsuXLxf4HI7ncTzHjayTlpYmPXr0kFdfffWqfI5OG6syrYPk1VdflaJFi8qoUaPyfTwxMVEqVarkHKZoUSlXrpwkJiYW+LyZmZmSmZlp/JyamuqawAAAAAAAAAAAWEDt2rWlRIkSsmHDhqtuq3WjfvnlF+nZs6cMGjRIRHI7Tg4cOCD16tVzZVRp2rSpfPrpp1K9enUpWtS0LgdT3PIcJNeyc+dOWbBggXzwwQdGr5WrvPLKKxIQEGD8Cw0NdenzAwAAAAAAAADgScWLF5eJEyfKhAkT5MMPP5TDhw/Lli1b5L333rvh56hdu7Z8//338r///U/27dsnTz31lCQlJbk86/DhwyU5OVkGDBgg27dvl8OHD8u3334rQ4YMkZycnBt+nujoaImOjpa0tDQ5c+aMREdHy969e12eNy9TOkj++9//yunTp6VatWpStGhRKVq0qBw/flyee+45qV69uoiIBAcHX3Ufs+zsbElOTpbg4OACn3vy5MmSkpJi/IuPjzfjTwAAAAAAAAAAwGOmT58uzz33nMyYMUPq1q0r/fr1u+qc+rVMmzZNmjZtKlFRUdK+fXsJDg6WXr16uTxnSEiI/PLLL5KTkyOdO3eWBg0ayOjRoyUwMFB8fG68C6JJkybSpEkT2blzp6xYsUKaNGki3bp1c3nevGyqqn/5SWw2+fzzz43GPXfunCQkJDitExUVJYMHD5YhQ4bIXXfdJfv27ZN69erJjh07pFmzZiIi8t1330mXLl3kxIkTNzxJe2pqqgQEBEhKSoqUKVPmr/4p+IuqT1onIiLH5nT3cBIAAAAAAAAAEMnIyJCjR49KjRo1pHjx4p6OAxe51na90X6DW74hWFpamhw6dMj4+ejRoxIdHS3lypWTatWqSfny5Z3WL1asmAQHB8tdd90lIiJ169aVLl26yJNPPilLliyRrKwsGTFihPTv3/+GO0cAAAAAAAAAAABuxS3fYmvHjh3GkBcRkbFjx0qTJk1kxowZN/wcy5cvl7CwMOnUqZN069ZN/va3v8k777xzq5EAAAAAAAAAAABuyC2PIGnfvr3czN25jh07dtWycuXKyYoVK241AgAAAAAAAAAAwC0xZZJ2AAAAAAAAAAAAK6ODBAAAAAAAAAAAeB06SAAAAAAAAAAAt72bmTIC1ueK7UkHCQAAAAAAAADgtlWsWDEREbl48aKHk8CVHNvTsX1vxS1P0g4AAAAAAAAAgNUVKVJEAgMD5fTp0yIiUrJkSbHZbB5OhVulqnLx4kU5ffq0BAYGSpEiRW75ueggAQAAAAAAAADc1oKDg0VEjE4SFH6BgYHGdr1VdJAAAAAAAAAAAG5rNptNKleuLJUqVZKsrCxPx8FfVKxYsb80csSBDhIAAAAAAAAAgFcoUqSIS06s4/bAJO0AAAAAAAAAAMDr0EECAAAAAAAAAAC8Dh0kAAAAAAAAAADA69BBAgAAAAAAAAAAvA4dJAAAAAAAAAAAwOsU9XQAAABgPdUnrTP+/9ic7h5MAgAAAAAAYA5GkAAAAAAAAAAAAK9DBwkAAAAAAAAAAPA6dJAAAAAAAAAAAACvQwcJAAAAAAAAAADwOnSQAAAAAAAAAAAAr0MHCQAAAAAAAAAA8Dp0kAAAAAAAAAAAAK9DBwkAAAAAAAAAAPA6dJAAAAAAAAAAAACvQwcJAAAAAAAAAADwOnSQAAAAAAAAAAAAr0MHCQAAAAAAAAAA8Dp0kAAAAAAAAAAAAK9DBwkAAAAAAAAAAPA6dJAAAAAAAAAAAACvQwcJAAAAAAAAAADwOnSQAAAAAAAAAAAAr3PLHSSbNm2SHj16SEhIiNhsNlmzZo3xWFZWlkycOFEaNGgg/v7+EhISIo888oicOnXK6TmSk5Nl4MCBUqZMGQkMDJShQ4dKWlraLf8xAAAAAAAAAAAAN+KWO0jS09OlUaNGsnjx4qseu3jxouzatUumT58uu3btks8++0z2798v999/v9N6AwcOlLi4OPn+++/lq6++kk2bNsmwYcNuNRIAAAAAAAAAAMANKXqrv9i1a1fp2rVrvo8FBATI999/77Rs0aJF0qJFC/n999+lWrVqsm/fPlm/fr1s375dwsPDRUTkzTfflG7dusm8efMkJCTkVqMBAAAAAAAAAABck9vmIElJSRGbzSaBgYEiIrJ582YJDAw0OkdERCIjI8XHx0e2bt3qrlgAAAAAAAAAAMAL3fIIkpuRkZEhEydOlAEDBkiZMmVERCQxMVEqVarkHKZoUSlXrpwkJiYW+FyZmZmSmZlp/JyammpOaAAAAAAAAAAAcNsyfQRJVlaWPPTQQ6Kq8vbbb//l53vllVckICDA+BcaGuqClAAAAAAAAAAAwJuY2kHi6Bw5fvy4fP/998boERGR4OBgOX36tNP62dnZkpycLMHBwQU+5+TJkyUlJcX4Fx8fb1p+AAAAAAAAAABwezLtFluOzpGDBw/Kjz/+KOXLl3d6PCIiQs6fPy87d+6UZs2aiYjIDz/8IHa7XVq2bFng8/r5+Ymfn59ZsQEAAAAAAAAAgBe45Q6StLQ0OXTokPHz0aNHJTo6WsqVKyeVK1eWvn37yq5du+Srr76SnJwcY16RcuXKia+vr9StW1e6dOkiTz75pCxZskSysrJkxIgR0r9/fwkJCfnrfxkAAAAAAAAAAEABbrmDZMeOHdKhQwfj57Fjx4qIyKOPPiovvPCCrF27VkREGjdu7PR7P/74o7Rv315ERJYvXy4jRoyQTp06iY+Pj/Tp00cWLlx4q5EAAAAAAAAAAABuyC13kLRv315UtcDHr/WYQ7ly5WTFihW3GgEAAAAAAAAAAOCWmDpJOwAAAAAAAAAAgBXRQQIAAAAAAAAAALwOHSQAAAAAAAAAAMDr0EECAAAAAAAAAAC8Dh0kAAAAAAAAAADA69BBAgAAAAAAAAAAvA4dJAAAAAAAAAAAwOvQQQIAAAAAAAAAALwOHSQAAAAAAAAAAMDr0EECAAAAAAAAAAC8Dh0kAAAAAAAAAADA69BBAgAAAAAAAAAAvA4dJAAAAAAAAAAAwOvQQQIAAAAAAAAAALwOHSQAAAAAAAAAAMDrFPV0ABR+1Set83QEAAAAAAAAAABuCiNIAAAAAAAAAACA16GDBAAAAAAAAAAAeB06SAAAAAAAAAAAgNehgwQAAAAAAAAAAHgdOkgAAAAAAAAAAIDXoYMEAAAAAAAAAAB4HTpIAAAAAAAAAACA16GDBAAAAAAAAAAAeB06SAAAAAAAAAAAgNehgwQAAAAAAAAAAHgdOkgAAAAAAAAAAIDXoYMEAAAAAAAAAAB4HTpIAAAAAAAAAACA1ynq6QAAAMDaqk9aZ/z/sTndPZgEAAAAAADAdRhBAgAAAAAAAAAAvM4td5Bs2rRJevToISEhIWKz2WTNmjVOj6uqzJgxQypXriwlSpSQyMhIOXjwoNM6ycnJMnDgQClTpowEBgbK0KFDJS0t7VYjAQAAAAAAAAAA3JBb7iBJT0+XRo0ayeLFi/N9fO7cubJw4UJZsmSJbN26Vfz9/SUqKkoyMjKMdQYOHChxcXHy/fffy1dffSWbNm2SYcOG3WokAAAAAAAAAACAG3LLc5B07dpVunbtmu9jqirz58+XadOmSc+ePUVE5MMPP5SgoCBZs2aN9O/fX/bt2yfr16+X7du3S3h4uIiIvPnmm9KtWzeZN2+ehISE3Go0AAAAAAAAAACAazJlDpKjR49KYmKiREZGGssCAgKkZcuWsnnzZhER2bx5swQGBhqdIyIikZGR4uPjI1u3bjUjFgAAAAAAAAAAgIj8hREk15KYmCgiIkFBQU7Lg4KCjMcSExOlUqVKzmGKFpVy5coZ6+QnMzNTMjMzjZ9TU1NdFRsAAAAAAAAAAHgJUzpIzPTKK6/IzJkzPR0D11F90jrj/4/N6e7BJAAAAAAAAAAAXM2UW2wFBweLiEhSUpLT8qSkJOOx4OBgOX36tNPj2dnZkpycbKyTn8mTJ0tKSorxLz4+3sXpAQAAAAAAAADA7c6UDpIaNWpIcHCwbNiwwViWmpoqW7dulYiICBERiYiIkPPnz8vOnTuNdX744Qex2+3SsmXLAp/bz89PypQp4/QPAAAAAAAAAADgZtzyLbbS0tLk0KFDxs9Hjx6V6OhoKVeunFSrVk1Gjx4ts2bNktq1a0uNGjVk+vTpEhISIr169RIRkbp160qXLl3kySeflCVLlkhWVpaMGDFC+vfvLyEhIX/5DwMAAAAAAAAAACjILXeQ7NixQzp06GD8PHbsWBERefTRR+WDDz6QCRMmSHp6ugwbNkzOnz8vf/vb32T9+vVSvHhx43eWL18uI0aMkE6dOomPj4/06dNHFi5c+Bf+HAAAAAAAAAAAgOuzqap6OsRfkZqaKgEBAZKSksLttjwk74Ts+WGSdgAofArat7NPBwAAAAAAVnej/QamzEECAAAAAAAAAABgZXSQAAAAAAAAAAAAr3PLc5AAAADvk/fWW9xuCwAAAAAAFGaMIAEAAAAAAAAAAF6HESQAAEBECp6Y/VafgxEmAAAAAADAyhhBAgAAAAAAAAAAvA4jSAAAwF/mitEnAAAAAAAA7sQIEgAAAAAAAAAA4HXoIAEAAAAAAAAAAF6HDhIAAAAAAAAAAOB16CABAAAAAAAAAABehw4SAAAAAAAAAADgdeggAQAAAAAAAAAAXocOEgAAAAAAAAAA4HXoIAEAAAAAAAAAAF6HDhIAAAAAAAAAAOB16CABAAAAAAAAAABehw4SAAAAAAAAAADgdeggAQAAAAAAAAAAXocOEgAAAAAAAAAA4HXoIAEAAAAAAAAAAF6HDhIAAAAAAAAAAOB16CABAAAAAAAAAABehw4SAAAAAAAAAADgdeggAQAAAAAAAAAAXocOEgAAAAAAAAAA4HXoIAEAAAAAAAAAAF6nqKcDAACAwqn6pHWejgAAAAAAAHDLGEECAAAAAAAAAAC8Dh0kAAAAAAAAAADA69BBAgAAAAAAAAAAvI6pHSQ5OTkyffp0qVGjhpQoUULuvPNOeemll0RVjXVUVWbMmCGVK1eWEiVKSGRkpBw8eNDMWAAAAAAAAAAAwMuZ2kHy6quvyttvvy2LFi2Sffv2yauvvipz586VN99801hn7ty5snDhQlmyZIls3bpV/P39JSoqSjIyMsyMBgAAAAAAAAAAvFhRM5/8f//7n/Ts2VO6d+8uIiLVq1eXlStXyrZt20Qkd/TI/PnzZdq0adKzZ08REfnwww8lKChI1qxZI/379zczHgAAAAAAAAAA8FKmjiBp3bq1bNiwQQ4cOCAiIjExMfLzzz9L165dRUTk6NGjkpiYKJGRkcbvBAQESMuWLWXz5s1mRgMAAAAAAAAAAF7M1BEkkyZNktTUVAkLC5MiRYpITk6OvPzyyzJw4EAREUlMTBQRkaCgIKffCwoKMh67UmZmpmRmZho/p6ammpQeAAAAAAAAAADcrkwdQfKf//xHli9fLitWrJBdu3bJsmXLZN68ebJs2bJbfs5XXnlFAgICjH+hoaEuTAwAAAAAAAAAALyBqR0k48ePl0mTJkn//v2lQYMGMnjwYBkzZoy88sorIiISHBwsIiJJSUlOv5eUlGQ8dqXJkydLSkqK8S8+Pt7MPwEAAAAAAAAAANyGTO0guXjxovj4OL9EkSJFxG63i4hIjRo1JDg4WDZs2GA8npqaKlu3bpWIiIh8n9PPz0/KlCnj9A8AAAAAAAAAAOBmmDoHSY8ePeTll1+WatWqSf369WX37t3yj3/8Qx5//HEREbHZbDJ69GiZNWuW1K5dW2rUqCHTp0+XkJAQ6dWrl5nRAAAAAAAAAACAFzO1g+TNN9+U6dOnyzPPPCOnT5+WkJAQeeqpp2TGjBnGOhMmTJD09HQZNmyYnD9/Xv72t7/J+vXrpXjx4mZGAwAA/1/1Ses8HQEAAAAAAMDtbKqqng7xV6SmpkpAQICkpKRwuy0Pud6JtWNzurspCQDgVpjVQcL+HwAAAAAAeMKN9huYOgcJAAAAAAAAAACAFdFBAgAAAAAAAAAAvA4dJAAAAAAAAAAAwOvQQQIAAAAAAAAAALwOHSQAAAAAAAAAAMDr0EECAAAAAAAAAAC8Dh0kAAAAAAAAAADA69BBAgAAAAAAAAAAvA4dJAAAAAAAAAAAwOvQQQIAAAAAAAAAALwOHSQAAAAAAAAAAMDr0EECAAAAAAAAAAC8Dh0kAAAAAAAAAADA69BBAgAAAAAAAAAAvA4dJAAAAAAAAAAAwOvQQQIAAAAAAAAAALwOHSQAAAAAAAAAAMDr0EECAAAAAAAAAAC8Dh0kAAAAAAAAAADA69BBAgAAAAAAAAAAvA4dJAAAAAAAAAAAwOsU9XQAAADgftUnrfN0BAAAAAAAAI9iBAkAAAAAAAAAAPA6dJAAAAAAAAAAAACvQwcJAAAAAAAAAADwOnSQAAAAAAAAAAAAr0MHCQAAAAAAAAAA8Dp0kAAAAAAAAAAAAK9DBwkAAAAAAAAAAPA6dJAAAAAAAAAAAACvQwcJAAAAAAAAAADwOqZ3kJw8eVIGDRok5cuXlxIlSkiDBg1kx44dxuOqKjNmzJDKlStLiRIlJDIyUg4ePGh2LAAAAAAAAAAA4MVM7SD5448/pE2bNlKsWDH55ptvZO/evfL6669L2bJljXXmzp0rCxculCVLlsjWrVvF399foqKiJCMjw8xoAAAAAAAAAADAixU188lfffVVCQ0Nlffff99YVqNGDeP/VVXmz58v06ZNk549e4qIyIcffihBQUGyZs0a6d+/v5nxAAAAAAAAAACAlzJ1BMnatWslPDxcHnzwQalUqZI0adJE3n33XePxo0ePSmJiokRGRhrLAgICpGXLlrJ582YzowEAAAAAAAAAAC9magfJkSNH5O2335batWvLt99+K3//+99l1KhRsmzZMhERSUxMFBGRoKAgp98LCgoyHrtSZmampKamOv0DAAAAAAAAAAC4GabeYstut0t4eLjMnj1bRESaNGkisbGxsmTJEnn00Udv6TlfeeUVmTlzpitjAgAAAAAAAAAAL2PqCJLKlStLvXr1nJbVrVtXfv/9dxERCQ4OFhGRpKQkp3WSkpKMx640efJkSUlJMf7Fx8ebkBwAAAAAAAAAANzOTO0gadOmjezfv99p2YEDB+SOO+4QkdwJ24ODg2XDhg3G46mpqbJ161aJiIjI9zn9/PykTJkyTv8AAAAAAAAAAABuhqm32BozZoy0bt1aZs+eLQ899JBs27ZN3nnnHXnnnXdERMRms8no0aNl1qxZUrt2balRo4ZMnz5dQkJCpFevXmZGAwAAAAAAAAAAXszUDpLmzZvL559/LpMnT5YXX3xRatSoIfPnz5eBAwca60yYMEHS09Nl2LBhcv78efnb3/4m69evl+LFi5sZDQAAmKz6pHXG/x+b092DSQAAAAAAAK5mageJiMh9990n9913X4GP22w2efHFF+XFF180OwoAAAAAAAAAAICImDwHCQAAAAAAAAAAgBXRQQIAAAAAAAAAALyO6bfYAgAAYD4SAAAAAABgNYwgAQAAAAAAAAAAXocOEgAAAAAAAAAA4HXoIAEAAAAAAAAAAF6HDhIAAAAAAAAAAOB16CABAAAAAAAAAABehw4SAAAAAAAAAADgdeggAQAAAAAAAAAAXqeopwPg9ld90jrj/4/N6e7BJAAAAAAAAAAA5GIECQAAAAAAAAAA8Dp0kAAAAAAAAAAAAK9DBwkAAAAAAAAAAPA6dJAAAAAAAAAAAACvQwcJAAAAAAAAAADwOnSQAAAAAAAAAAAAr0MHCQAAAAAAAAAA8Dp0kAAAAAAAAAAAAK9DBwkAAAAAAAAAAPA6dJAAAAAAAAAAAACvQwcJAAAAAAAAAADwOnSQAAAAAAAAAAAAr1PU0wEAFC7VJ60z/v/YnO4eTAIAAAAAAAAAt44RJAAAAAAAAAAAwOvQQQIAAAAAAAAAALwOHSQAAAAAAAAAAMDrMAcJAAC3MeYNAgAAAAAAyB8jSAAAAAAAAAAAgNdhBAluSd4rkoEbwVXsAAAAAAAAAKyEESQAAAAAAAAAAMDruK2DZM6cOWKz2WT06NHGsoyMDBk+fLiUL19eSpUqJX369JGkpCR3RQJwDdUnrTP+AQAAAAAAAMDtxi0dJNu3b5elS5dKw4YNnZaPGTNGvvzyS/n4449l48aNcurUKXnggQfcEQkAAAAAAAAAAHgx0+cgSUtLk4EDB8q7774rs2bNMpanpKTIe++9JytWrJCOHTuKiMj7778vdevWlS1btkirVq3MjgYAgFdhRBgAAAAAAMCfTB9BMnz4cOnevbtERkY6Ld+5c6dkZWU5LQ8LC5Nq1arJ5s2bzY4FAAAAAAAAAAC8mKkjSFatWiW7du2S7du3X/VYYmKi+Pr6SmBgoNPyoKAgSUxMLPA5MzMzJTMz0/g5NTXVZXkBAAAAAAAAAIB3MK2DJD4+Xp599ln5/vvvpXjx4i573ldeeUVmzpzpsucDvEne2+scm9Pdcs8HAAAAAAAAAO5i2i22du7cKadPn5amTZtK0aJFpWjRorJx40ZZuHChFC1aVIKCguTy5cty/vx5p99LSkqS4ODgAp938uTJkpKSYvyLj483608AAAAAAAAAAAC3KdNGkHTq1El+/fVXp2VDhgyRsLAwmThxooSGhkqxYsVkw4YN0qdPHxER2b9/v/z+++8SERFR4PP6+fmJn5+fWbEB3CLHaBJGkgAAAAAAAAAoDEzrICldurTcfffdTsv8/f2lfPnyxvKhQ4fK2LFjpVy5clKmTBkZOXKkRERESKtWrcyKBQAAAAAAAAAAYO4k7dfzxhtviI+Pj/Tp00cyMzMlKipK3nrrLU9GAuBBjEIBAAAAAAAA4C5u7SD56aefnH4uXry4LF68WBYvXuzOGAAAAAAAAAAAwMuZNkk7AAAAAAAAAACAVdFBAgAAAAAAAAAAvI5H5yABYA2OuT+sIm8eV8xH4urnAwAAAAAAAFD4MYIEAAAAAAAAAAB4HTpIAAAAAAAAAACA16GDBAAAAAAAAAAAeB3mIIGlMFdE4cc2BAAAAAAAAFAYMIIEAAAAAAAAAAB4HUaQALehGxnFkXcdALcX3t8AAAAAAADXxwgSAAAAAAAAAADgdRhBAhRy7pjz41avRucqdgDXw7xFAAAAAADAUxhBAgAAAAAAAAAAvA4jSAB4La5cdw3aEQAAAAAAAIURI0gAAAAAAAAAAIDXoYMEAAAAAAAAAAB4HW6xBbfiVjwQ8ezk7Tfz2tQrAAAAAAAAcPtiBAkAAAAAAAAAAPA6jCDBbcNxtT9X+t9eChrxcb3t7MlRKgAAAAAAAACsjxEkAAAAAAAAAADA6zCCBCgkmA+j8LiRbcX2BAAAAAAAADyLESQAAAAAAAAAAMDrMIIEQKHECIzrM7ONbmaOF7YVrsQcQQAAAAAAwAoYQQIAAAAAAAAAALwOI0iA67iZq98LWvdml8P9HNviRraDJ7ebq1/7es93s693M+0IAAAAAAAAeBIjSAAAAAAAAAAAgNdhBAmQx61e/Z7f/fStco99q+TwBrQ1AAAAAAAAUHgwggQAAAAAAAAAAHgdRpDAY6wy/4bVrvq3SrsURlbblgAAAAAAAACsixEkAAAAAAAAAADA6zCCBDfMilfnX2/uDzNHYBSW9vAG/N3WG23krdsEAAAAAAAAhQcjSAAAAAAAAAAAgNcxdQTJK6+8Ip999pn89ttvUqJECWndurW8+uqrctdddxnrZGRkyHPPPSerVq2SzMxMiYqKkrfeekuCgoLMjIZCwMpXx5vhZq645+p8FMQVtUF9AQAAAAAAwBuYOoJk48aNMnz4cNmyZYt8//33kpWVJZ07d5b09HRjnTFjxsiXX34pH3/8sWzcuFFOnTolDzzwgJmxAAAAAAAAAACAlzN1BMn69eudfv7ggw+kUqVKsnPnTmnXrp2kpKTIe++9JytWrJCOHTuKiMj7778vdevWlS1btkirVq3MjIcb4K1Xknvr343b143U9PXW4X0BAAAAAACA24lb5yBJSUkREZFy5cqJiMjOnTslKytLIiMjjXXCwsKkWrVqsnnz5nyfIzMzU1JTU53+AQAAAAAAAAAA3AxTR5DkZbfbZfTo0dKmTRu5++67RUQkMTFRfH19JTAw0GndoKAgSUxMzPd5XnnlFZk5c6bZcXGbu9Ur4ZnfwXuZud1cMd8OdQUR6gAAAAAAAOBmuG0EyfDhwyU2NlZWrVr1l55n8uTJkpKSYvyLj493UUIAAAAAAAAAAOAt3DKCZMSIEfLVV1/Jpk2bpGrVqsby4OBguXz5spw/f95pFElSUpIEBwfn+1x+fn7i5+dndmQAAAAAAAAAAHAbM3UEiarKiBEj5PPPP5cffvhBatSo4fR4s2bNpFixYrJhwwZj2f79++X333+XiIgIM6Ph/6s+aZ3xDwAAAAAAAAAAb2HqCJLhw4fLihUr5IsvvpDSpUsb84oEBARIiRIlJCAgQIYOHSpjx46VcuXKSZkyZWTkyJESEREhrVq1MjMaAAAAAAAAAADwYqZ2kLz99tsiItK+fXun5e+//7489thjIiLyxhtviI+Pj/Tp00cyMzMlKipK3nrrLTNjwYswMgZmo8ZcyxUT1nsbahAAAAAAAODWmNpBoqrXXad48eKyePFiWbx4sZlRAAAAAAAAAAAADG6ZpB24Hq6Azh/tUvgxIsLZzbQHbQcAAAAAAAAzmTpJOwAAAAAAAAAAgBUxggSFAiMp4C5m1tqNPLdjHUZMAAAAAAAAAOZiBAkAAAAAAAAAAPA6jCABAAvyhvk3mI8EAAAAAAAAnsQIEgAAAAAAAAAA4HUYQYKrMN8HYC28JwEAAAAAAADXYwQJAAAAAAAAAADwOnSQAAAAAAAAAAAAr0MHCQAAAAAAAAAA8DrMQQIA8Dp553U5Nqe7B5PcGualAQAAAAAA+OsYQQIAAAAAAAAAALwOI0hg4IpkAJ7C/gcif9ZBYRzVAwAAAAAACh9GkAAAAAAAAAAAAK/DCBIAgFdglAoAAAAAAADyYgQJAAAAAAAAAADwOnSQAAAAAAAAAAAAr8MttgAAhcrN3CrrRib7zvt8TA4OAAAAAADgPRhBAgAAAAAAAAAAvA4dJAAAAAAAAAAAwOvQQQIAAAAAAAAAALwOHSQAAAAAAAAAAMDr0EECAAAAAAAAAAC8TlFPBwAAwCzVJ63zdASXuZ3+FgAAAAAAACtgBAkAAAAAAAAAAPA6jCABAACWkne0zLE53T2YBAAAAAAA3M4YQQIAAAAAAAAAALwOI0gAADDZzYyIYPQEAAAAAACAezCCBAAAAAAAAAAAeB1GkAAA8P85Rm+YOXKDESI3p6D2oh0BAAAAAMBfxQgSAAAAAAAAAADgdSwxgmTx4sXy2muvSWJiojRq1EjefPNNadGihadjAQDgJO+oheu5kVENjIIAAAAAAADwHI+PIFm9erWMHTtWnn/+edm1a5c0atRIoqKi5PTp056OBgAAAAAAAAAAblM2VVVPBmjZsqU0b95cFi1aJCIidrtdQkNDZeTIkTJp0qTr/n5qaqoEBARISkqKlClTxuy4t52buRoaALxFQXNdwNq8YRSOu0cdmTkHjFl/y408r1Xa0coKY+bbFdsCVkI9AgCAwuJG+w08eouty5cvy86dO2Xy5MnGMh8fH4mMjJTNmzfn+zuZmZmSmZlp/JySkiIiuX8wbp4986KnIwCA5eQ9prCfLDy84bNA3np0x99b0Ou5IodZf8uNPK9V2tHKCmPm2xXbAlZCPQIAgMLC8VnleuNDPDqC5NSpU1KlShX53//+JxEREcbyCRMmyMaNG2Xr1q1X/c4LL7wgM2fOdGdMAAAAAAAAAABQyMTHx0vVqlULfNwSk7TfjMmTJ8vYsWONn+12uyQnJ0v58uXFZrN5MJk1paamSmhoqMTHx3v8FmRkKRx5yFI48pDF+lmslocshSMPWayfxWp5yFI48pClcOQhi/WzWC0PWQpHHrIUjjxksX4Wq+UhC65HVeXChQsSEhJyzfU82kFSoUIFKVKkiCQlJTktT0pKkuDg4Hx/x8/PT/z8/JyWBQYGmhXxtlGmTBnLvEHJUjAr5SFLwayUhyz5s1IWEWvlIUvBrJSHLPmzUhYRa+UhS8GslIcsBbNSHrLkz0pZRKyVhywFs1IeshTMSnnIkj8rZRGxVh6y4FoCAgKuu46PG3IUyNfXV5o1ayYbNmwwltntdtmwYYPTLbcAAAAAAAAAAABcyeO32Bo7dqw8+uijEh4eLi1atJD58+dLenq6DBkyxNPRAAAAAAAAAADAbcrjHST9+vWTM2fOyIwZMyQxMVEaN24s69evl6CgIE9Huy34+fnJ888/f9VtychinSwi1spDloJZKQ9ZrJ9FxFp5yFIwK+Uhi/WziFgrD1kKZqU8ZCmYlfKQxfpZRKyVhywFs1IeshTMSnnIYv0sItbKQxa4ik1V1dMhAAAAAAAAAAAA3Mmjc5AAAAAAAAAAAAB4Ah0kAAAAAAAAAADA69BBAgAAAAAAAAAAvA4dJAAAAAAAAAAAwOvQQQIAAAAAAAAAALwOHSS3MVX1dAQAAAAAAAAAACyJDpLbTHp6uly4cEFSU1PFZrN5Os41Wa0Dhzy4WVbaRlbKgoJZbTtZLY+DlXJZIYsVMjhYKUteVspFloJZLY+DlXKRJX9WyiJirTxkKZiV8pClYFbKQ5b8WSmLiLXykKVgVspDFlyPTdkyt429e/fKmDFj5MyZM5KUlCRz586VgQMHiqp6vLPk999/lw0bNsgff/whDRs2lMjISI/mySsnJ0eKFCki2dnZUrRoUbHb7eLj47m+Q6vkOXXqlOzatUsuX74s1atXl6ZNm7o9g1XzON5Tjv96smaslMVK28hqeay0nayWJz4+Xn788UdJT0+XmjVrSlRUlEdyWC2LiLW2k5WyWGk7kaXw5MkrIyNDLl++LH5+fuLn5yci4rHPy1bKkpaWJpcuXRJVlUqVKpElDyttJ7IUjjxkKRx5rJTFSvs9K2URsdZ2slIWq20nK+UhC26a4rYQFxen5cuX1zFjxujy5ct17NixWqxYMd29e7eno+mePXv0jjvu0DZt2mi9evW0WLFiumzZMk/HUlXV/fv366hRo7RPnz46bNgwPX78uKqq5uTkeHWePXv2aM2aNbVFixZaoUIFDQ8P148//titGaya5+DBg/r888/rY489pq+++qomJiaqqqrdbvfqLFbaRlbLY6XtZLU8e/bs0WrVqmnbtm21Vq1aWqVKFX3rrbfcnsNqWVSttZ2slMVK24kshSdPXnFxcdq7d2+tX7++duvWTd9++22yqGpsbKx27txZa9eurS1atNDJkyeT5f+z0nYiS+HIQ5bCkcdKWay037NSFlVrbScrZbHadrJSHrLgVnCLrdtAcnKyjBkzRgYOHCj/+Mc/5OGHH5bXX39d2rRpI//6179ExHNDuI4ePSo9evSQ/v37y4YNG2Tjxo0ybdo0mT9/viQmJnp0aFlsbKy0bt1aLly4IMWKFZODBw9K3759JTk52SNXxVolz+HDh6Vbt27St29f+e6772T9+vVSv359+eabbyQnJ8ft28xKeX799VeJiIiQgwcPypEjR2Tt2rUyatQoSU9Pd3vvv5WyWGkbWS2PlbaT1fLkPT58//338v3338uQIUNkzZo18scff7h1O1kpi4i1tpOVslhpO5Gl8OTJa+/evdKuXTupXLmyPPPMMxIQECDLly+XXbt2eXWWffv2Sbt27aR+/foya9Ysuffee+X//u//ZO3atV6dRcRa24kshSMPWQpHHitlsdJ+z0pZRKy1nayUxWrbyUp5yIJb5pl+GbhSYmKitmjRQjdt2qSqf442GDJkiA4cONBjuS5fvqzTp0/Xnj176sWLF43l3333nQYHB+upU6c8lu3kyZPauHFjnTBhgrHsp59+0rvvvttoR2/Mk5mZqWPHjtWHHnpIMzMzjeXvvfeeli9fXs+ePeu2LFbLEx8fr/Xr19dJkyYZyz744AO9++679fDhw27LYbUsVtpGVstjpe1ktTxZWVk6Y8YM7dmzp6anpxvL161bp4GBgRofH++VWVSttZ2slMVK24kshSdPXmfPntV77rlHn332WWPZuXPn9I477tC5c+d6bZbk5GSNiorSUaNGGctSU1O1RYsWOnbsWK/Nomqt7USWwpGHLIUjj5WyWGm/Z6UsqtbaTlbKYrXtZKU8ZMFfwQiS20BQUJB89NFH0rZtWxHJncNCRKRKlSpXjTxIS0tzS6acnBwpVqyYNGjQQFq0aCElSpQwHmvRooUUK1ZMzp4965Ys+dm1a5cEBgbK0KFDjSsZ77nnHrHb7RIXF+e1eex2u1StWlXuvfde8fX1NbK0bt1aSpUqJVlZWW7LIiKSnZ1tmTybNm2S0NBQefrpp8Vut4uISL9+/eT8+fPy66+/ui2Hqlomi8it1YyaePXwrdSMWXmstJ2sVjc+Pj5y1113SceOHaVkyZLG8hYtWkjp0qXlwoULV/2OWdtJVS2TRcQ6dUPNFMxKNWOldnE8t5Xy5HX8+HEJCgqSPn36iEju8aJcuXLSrVs3OXfunIiIUedm57JSluTkZKlYsaIxR0xOTo6ULl1aevToIUlJScYyb8siYq3tRJbCkYcshSOPlbJYab9npSwi1tpOVspite1kpTxkwV9R1NMB4Bq1a9cWkdydcrFixUQk9w12+vRpY51XXnlF/Pz8ZNSoUVK0qHmbPjo6WqZPny7/+c9/pEePHlK8eHEjj81mM14774nKrVu3SsuWLU3LdKWaNWvK448/LnXq1BERMSZEL126dL4nUM2ejPbOO++UoUOHejxP8eLFpVevXlKjRg2n5YGBgVKsWDGnLLt375YmTZq4PIOIyPnz5yUwMFBKliwpffr0kWrVqnk0j4hIcHCw9O3bV+644w4RyT2Y2Ww28fPzk4yMjKvWN2sb2Ww2qVy5sjz44IMezyJyazVjxm15/krNmHWbIKvUjIj16sbHx0eioqKkfPnyIvLn8cHf31+KFi0qly9fNtbdvHmzREREuHw7nTlzRipWrCjFihWTrl27StmyZT2WJS+r1A01czUr1owV2kXEmm1zpSpVqkjv3r2NC4qKFCliZHR8Xs5bv2bkcrRH1apVPZ7FoVy5cjJ48GDp3Lmz0+va7Xb5448/3JLFse+oUKGCx7PkRc3kzwrt4ng92uZqVmwXEdqmIOyDC0bN5M8KNeN4PavVjRXaxortghvDCJLbjI+Pj1PPo+MNN2PGDJk6dap06tTJ1M6RmJgYad26tdSrV09KlChhdI44TqpkZWVJWlqa5OTkGFcWTpkyRSIiIuTMmTOm5bpS3bp1ZfDgwSKSu4NytElgYKDTl/fXXntNjh8/bsoJn0OHDsn27duNPIMGDfJInoSEBNm2bZusX79e7Ha7caLbsc1ERFJSUoyduEhuPXXq1Mm4WsKVoqOjpUePHhIdHS0iYpzodnw4cXceh/bt28vQoUNFJHcbFSlSRPz8/KRixYpO77l3331XTp065fKa+f3332Xfvn1Glscff9xjWf5qzbj66oi/WjNmXa3h6ZoRsVbdxMfHy3fffSf//ve/5Y8//pDSpUuLyJ91Y7fbJSUlRdLT04194LRp06RNmzZy+vRpl26n6Ohoad26tfz3v/8VETFO5oqI27NcydN1Q83kz0o1Y6V2EbFW21wpMzPT+G9QUJD0799fRJyPV3nXExF59dVXZdasWS7Psn//fvnwww/l8uXLUqlSJSNL3mOVu7JcunRJ7Ha7ZGRkSNmyZY0v71e2S3Z2tojkbsfp06fL8OHDXZ5l79698vLLL0tGRoYEBAQYWa5sF3dkEaFmCmKldhGhbQpipXbJ+zq0jTP2wQWjZvJnpZoRsVbdWKltrNQuuHl0kNyGHF80ixYtKqGhoTJv3jyZO3eu7NixQxo1amTa6+7Zs0fatGkjI0aMkFdffdVYfvnyZaOHvWjRosb/+/n5yUsvvSRvvvmmbN26VSpWrGhatgMHDsjEiRNlyJAhMn/+fDl06FC+6+Xk5BjD3GbMmCETJ06UlJQUl+eJjo6WZs2aGSd0HVTV6QST2Xn27NkjERERMnjwYOnfv7/Ur19fVq5cKcnJyVKkSBGjlmw2m/j4+EipUqVk1qxZMm/ePPn++++NK1ZdJSYmRlq0aCERERHSuHFjp8fynkBxR55Dhw7JnDlzZPLkybJixQq5ePGi0+s75OTkGAe46dOny1NPPSWpqakuyyGSO9IhPDzcuN2a4/Xzqxezs7iiZlx5dYQrasZVeaxUMyLWq5sWLVrIuHHjZMSIEdK4cWN57bXX5MSJE1fVjc1mk1KlSsns2bNlwYIFsm3bNqlUqZLLtlNMTIy0atVKHnjgAeMqMIe8Q+PdkUXEWnVDzeTPSjVjpXYRsVbbXCkuLk4GDBgg9957r/Ts2VM2bdpknMQoUqSIka9ChQpGJ9OUKVNkxowZ0qNHD5dmiYmJkbp160pKSor4+vqKyJ/tk/fvd0eW2NhY6dGjh7Rp00bCw8Plo48+kpMnT4qIONVQuXLlxM/Pz8gyb948GTJkiEuzxMTESIMGDcTX19e4qMput191IsEdWUSomYJYqV1EaJuCWKldRGibgrAPLhg1kz8r1YyIterGSm1jpXbBLbpqVhLcNmbNmqU2m00DAgJ0+/btpr5WQkKCBgcHa1RUlKqqZmdn6+jRo7V79+4aFhamb7zxhv7222+qqpqRkaF33323RkZGqq+vr+7YscPUbHFxcRoQEKBdunTRPn36aEBAgEZGRuq7775rrOOYzDkiIkKXLFmiCxYsUD8/P925c6fL80RHR2vJkiWvOTHT5cuXTc9z+vRpDQsL0ylTpujhw4f15MmT2q9fP61bt64+//zzevr0aWPdpKQkbdKkifbr18+0bRYbG6slSpTQGTNmqKqq3W7Xc+fO6ZEjR65a1+w8sbGxGhgYqPfcc4+2a9dOixYtqn369NH169cb62RlZWlmZqbWqVNHP/nkE3399ddNqZno6Gj19/fXMWPGFLhOdna2W7JQM9fOYpWaUbVW3SQnJ2vTpk11woQJmpSUpDk5Ofrcc89py5Yt9ZFHHtFjx44Z6166dEkbNWqkUVFR6uvr6/JjV1xcnBYvXlxfeOEFVc2tmRMnTmh0dPRV65qdRdVadUPN5M9KNWOldlG1Vttc6cCBA1qmTBkdNmyYjh8/Xvv27as2m02ff/55PX78uNO648eP1xEjRuiLL76oxYsXd/nxISYmRv39/XX8+PFOy+12u6rmvq/cleXw4cNatmxZHT58uL755ps6cuRILVu2rA4bNuyq13r99df1wQcf1JkzZ6qfn5/b28WdWVSpmYJYqV1UaZuCWKldVGmbgrAPLhg1kz8r1YyqterGSm1jpXbBraOD5Da2fft2tdlsGhcXZ/prJSQkaO/evTU8PFzXrFmjXbp00U6dOulzzz2nw4cP1xo1aujQoUP16NGjGh8frzabTf38/DQmJsbUXJmZmTpo0CB98sknjWUHDx7Ufv36aatWrXTBggVO699///0aGBio/v7+um3bNpfnOXDggPr5+enUqVNVNbcjZO3atfrOO+/oF198oWlpaW7LExcXp9WrV79qhzxx4kRt0KCBzp07V9PT01VVde/evWqz2bREiRK6e/dul+ZQVT179qzWqlVLmzRpYiwbMmSINmvWTCtXrqzt2rXT3bt3GwcYM/NcvHhR77vvPh0+fLixbOfOnRoeHq6RkZH62WefOa3foUMHrVWrlpYsWdLlJ3z27dunJUuW1ClTpqhq7onSn376ST///HPdtGnTVeubmUWVmimIlWpG1Xp1c/z4cb3jjjv0//7v/5yWv/nmmxoREaHPPPOMnjlzRlXVOD74+vq6/Phw/vx5bd26tYaGhhrL+vfvrw0aNFB/f3+tV6+efvrpp0YNm5lF1Vp1Q83kz2o1Y5V2UbVe21xp2rRp2rlzZ6dlCxcu1PLly+vEiRM1MTHRWD5mzBi12Wzq7+/v8i+p+/fv19KlS+uwYcNUVTUnJ0eXLFmi48eP1/Hjx+vBgwed1jczi6rqvHnztF27dk7Lli9frg0bNtRHHnlEf/31V2P5yy+/rDabTUuXLu3yLEeOHNGyZcvqww8/rKq57TJnzhx94okn9KGHHtJNmzZpTk6OW7I4UDP5s0q7qNI2BbFau6jSNgVhH1wwaiZ/VqkZVevVjVXaxmrtglvHLbZuY+Hh4XLhwgWpV6+e6a8VHBwsixcvlnr16smAAQMkJydHVq9eLfPmzZNFixbJrFmz5NNPP5W4uDipWrWqvPHGG7Jr1y5p2LChqbl8fX0lKSnJ6TYhtWrVkrlz50pYWJh88skn8uWXXxrrlyhRQjIyMmTLli3SvHlzl2bJzs6WRYsWSalSpYxbAfXq1UumTZsms2fPlt69e8uQIUNk9+7dbsmTlZUl2dnZxu1cLl26JCIic+bMkQ4dOsjbb79t3IqsbNmy8swzz8iuXbuuuo2RK5QvX166dOki/v7+8sILL0iLFi0kISFBnnrqKXnrrbckKytLevXqJYcPHzY9T4kSJSQ5OVkqVKggIrnDIps2bSr//ve/JTs7W9555x2JiYkxHrPb7ZKQkCBbtmyR8PBwl+XIysqSKVOmiL+/v9x///0iIvLAAw/Is88+K08//bR06tRJRowYYUwKZ2YWh8zMTEvVTOfOnamZPFRVLl++bLm68fHxkZIlS8qpU6dE5M97ro4YMUIeeOAB+fHHH+WXX34Rkdwhx7Nnz5aYmBiXHx8CAgKkV69eUrt2bXn00UeNY+T06dPll19+kbvuukvGjh0r//vf/0zPIpJbN+fOnfN43eTk5MiUKVOkZMmS1MwVrFYzNptNSpQo4fF2Ecltm549e0qtWrUs0TZXchyfRP5sp5EjR8rLL78sixYtks8//9x4vHr16lKzZk3ZunWrNGvWzKU5tm3bJmlpaRIWFibHjh2Tjh07yvLly2XTpk3y008/yd133y3r1q1zSxaH1NRUSUtLM24V8vDDD8v06dNl8+bNsmrVKuPWrvXq1ZMGDRrI5s2bXZ4lLi5O/P39pWLFirJz506JjIyUb7/9VhISEiQ1NVXuueceefvtt431zcziQM3kzyrtIkLbFMRq7SJC21wL++D8WaVmtmzZQs0UwIp1Y4W2sWK74BZ5uocGt5eTJ0/q5MmTdcOGDarqPKSsVq1axpCzvMMSzZKdna2XL1/WIUOGaN++fTUjI0PtdrvRe3v48GGNiIjQfv36Gb/z3//+96ohnK504MABHTZsmLZq1UpDQ0O1W7duum/fPr148aLu2LFDq1Spoo888oix/s8//2xqnubNm2uHDh2MnzMyMoz/Dw8P1/79+xs/X7p0yZQMeXvTx44dq0FBQdq9e3enq0RUVevXr6+PPvqo6XkuXLigHTp00KefflpVc+soKytLVXNHUFStWlWfffZZVc2t71WrVuV7SydX2Llzp0ZFRWnnzp01LCxMu3Tport27dLjx4/runXr1NfXVydPnmxqllOnTjmNQgsPD/dozZw6dcrp6uMxY8Z4rGYctZuamqodOnTQv//976rquZpx7Fd37NihUVFRGhUV5bG6SU9PN25dqJo7Gq5JkyZ6/vx5VVWjfVRVu3btqu3btzd+dtxi0JVZLl68aPy8cOFCrVevnnbu3FlPnjzptG7btm2drl5zdRbV3Cvpt2/frtnZ2R6vm/j4eD169Kju3bvX4zVzpfvuu89jNXOl+fPne6xmcnJynI6TDz74oDZo0MBj7ZKTk+P0vEuXLtU6dep47P1UkAULFmjp0qWNTHn3RzNnztRSpUoZn69OnDih8fHxpmWZP3++hoSEaLVq1fT+++/X+Ph4zcjI0EuXLunTTz+tgYGBeuLECbdkWb16tZYoUUJ37dqlqs7t8vbbb6uvr6/Gxsaqau5IzaSkJNOyrFixwhj16TiGO2rkpZde0uLFi+u+ffvckkU199hglZpZsGCBZWrGSu8lVWu9n6iZgtE2+WMf7Czv3TM8XTMXLlww/t9KNbNy5UrL1Iyq6kcffeTxunFYtWqVZdrGCu8n/HV0kMDlUlJSnHZOdrtdz549qxEREfrvf//b9Ne/svPlp59+0iJFijjdTsuxzk8//aQ+Pj5Ow+/MznPo0CEdPHiwdu/e3ZiXxWHt2rVqs9muWu4KaWlpmpqaqikpKcayXbt2aaVKlXTAgAHGMsfJlrFjx2qPHj1cnuNaeVRzh0p++umnV93js0+fPtq3b19Tspw7d0737dun+/fvV1XVL7/8Um02m3766aeq6nxCaMWKFVq2bFk9evSoaVn27t1r1MC+ffu0TZs2eu+99171mosWLdIKFSqY1ol24sQJLV++vPbu3Vs3b96sqqq7d+/WChUqeKRm8sujqjp37ly318zu3bv1vvvuMz7Yf/zxxx6rGUee7t27Gx/uo6OjPVY3v/76q3bv3l03btxotM+ZM2e0Ro0aeu+99zodH1RzT3a0bdvW6USvGVkct/pRVV22bJmuXbvWOPHseO1Ro0Zpp06dXJ7DITY2VkNDQ415PlauXOmxuomNjdWqVavq6NGjVTX3tpyeqpn4+HhdvXq1fvrpp8aXHE/VTH5ZVD1TM3FxcTp48GDt0KGDDhkyRL/++ms9ffq0NmrUSDt06ODWdrkyz+OPP65r1qxRVdXPP/9cP/30U7e/n64lMzNT27Vrp61atdKzZ8+q6p+d5AkJCRoaGmq879xh/vz52rJly6tupbB3714tX768rl271tTXz3vBUu/evTU0NNT4cp73QodatWrpwoULTc2S93PxypUr9f7773c6pqvm3sKtYsWKunTpUlOz5HXx4kVt3769ZWpm4cKFHqkZu93utI0yMjI82i5X5lH1XNucO3fOab699PR0j7XNlVlUc2+36Kn9zMGDB51uB+3J99OVWVQ91zYHDx7Uzz77zGk/66l9sCNL3ouGPLkP/u2333TQoEHGZ8u0tDSP1YwjS9653DxVM+np6ZqcnOy0nXr27Omx47YjT97OrOXLl1vm2H3//fd79DNNXh999JFl2gW3hg4SuMWMGTO0du3aTgcdM+zfv1/nzZunp06dclo+b9489fHxcZqYXTX3Cv26deuadgKqoDzHjx/Xb775xjgR5vji+sknn2hYWJj+8ccfLs0RFxennTt31iZNmmhISIh+9NFHqpr7oWPlypVaoUIF7du3r16+fNk4wTFo0CDt37+/ZmVl5Tu5lKvz5P3yc+VJH7vdrn379nWajNtVfv31V23SpIk2aNBAixUrpjNnztSMjAwdOXKk+vn56Zdffum0/tdff61169Y1Pri50pVZHBPf/vbbb/rJJ59cVS+LFi3SBg0amDaa5scff9SiRYtqx44d9ZFHHjFOFq5atUrLli2rvXr1clvN5Jdny5YtxmN5P0Sqmlsz0dHRWqJECZ04caKxLCsrS0eMGKF+fn5XfWA2s2byy5N33pVPPvnEeD+5o24ck44/9dRT+vvvvzs9tnnzZg0JCdF77rlHDxw4YLz+0KFDtVu3ble9783Mour8Adph4MCBOnLkSLXb7S6v4ejoaC1ZsqTWqFFDg4KCNCEhQVXV2Nd89dVXTuubWTdXZnEcoxz7GscJbnfUzJ49e/SOO+7Q8PBwDQoK0h49ehid1Zs3b9aqVau6rWbyy5L3goX8Xs+smtm3b5+WLVtWhw4dqq+//rpGRUVpzZo19dlnn9VffvlF69evr23atHFLuxSUp0aNGvrcc88V+Dtmvp/y2r9/v06YMEEfe+wxnT9/vh44cEBVVTds2KAtWrTQTp066blz54z1k5OTNSws7KrjuxlZ9u7dazy2c+dO41jlaI+YmBitW7euKXP5JCUlOX2edByrY2NjtU2bNlqjRg2nq17T09O1SZMmplzMVFAW1dxjlaOGHe1y6NAhbdiwoTEi3dWOHDmi//jHP3Ts2LG6atUq47W//PJLjYiIcGvN5JfFITo62q01s3//fn322We1e/fuOnPmTOP489VXX7m9XfLLk/eKW3e3zeHDh7VmzZo6ffp0p9FyX331lbZu3dqtbVNQFlX3t4tq7kU6ZcqU0XfeecdpuSfq5sosefc17m6bmJgYrVixoj755JN68uRJ4zVjY2M1IiLCrfvggrKo5n4vd/c+2PHdxWaz6fvvv2+89rp169xeM/llyfuYO2smNjZW77vvPq1bt6726tXL+E7pieN2fnm++OIL4zF3H7t/++03nTRpkg4aNEhfe+013blzp/GaLVu2dGvbXJklbyfanj173P5+guvQQQJTrVy5UocNG6Zly5Z1uhLTDAcPHtRy5cqpzWbTyZMnGxOVqubuIGfOnKk2m02nTZumu3bt0nPnzumkSZO0Vq1aV12BY3Ye1fxP2I4bN06joqKuGlXxV8TFxWn58uV1zJgxunz5ch07dqwWK1bM2B7p6em6du1arVq1qoaFhWmvXr30oYceUn9/f1NG1hSUp6CJs7OysnTatGlauXLlqyZFc1WWcePGaVxcnM6bN09tNpuePHlST548qU8++aQWK1ZM3377bU1ISNBLly7ppEmTtFGjRpqcnOyWLI5Oxbwf8B2effZZ7dOnj9OV8a507tw5vf/++3Xp0qXatGlTffjhh40TT2vWrNF69erpXXfdZXrNFJRn4MCBumfPHlV1bh8zayYmJkb9/f2N2wU6ZGdn69mzZ3X48OFuq5lr5bnWiWyz6iYtLU07d+5s3DJKNfek6u7du40PrLGxsVqvXj2tXbu2tmjRQnv27KmlSpVy+aTN18qSX0f9pUuXdOrUqVqpUiVTRvA5vnxNmTJFz5w5o/Xq1dNZs2apau7JsWHDhmmxYsV06dKlptfNlVnq16+vL774otFJnd+xyayaOXbsmFapUkUnTZqkaWlp+vXXX2twcLBu3brVWMddNXMjWfIys2YyMjJ04MCBOmrUKKfXa9y4sdpsNh0wYIDu2bNHW7ZsqTVr1jS1Xa6Vp0mTJmqz2YxJKfM+Zub7Ka+4uDgNCAjQLl26aJ8+fTQgIEA7duyoH374oarmjght0aKF1qhRQ7/99lv94YcfdNq0aRocHOzyEVH5ZYmMjNQlS5YU+DsTJ07U8PBwl38O3bt3r/r6+mrfvn3z/Uy5bds2bd++vQYGBurSpUt15cqVOmnSJC1fvrwePnzYLVny+1zjMHXqVG3YsOFVFxi5wp49e7Rq1araqVMnbd26tfr4+OicOXNUNfdY/p///Mc4eWl2zeSXZe7cudf8HbNqZs+ePVqpUiXt27evPvXUU+rr62tcZJKdna2rV682TkKZ3S4F5XFcOFQQs9pGVXXJkiVqs9m0SZMm+vLLLxsdE9nZ2bpq1Sq37Wfyy+K44KIgZraL44KLsWPHXvVYdna2fvzxx26rm2tlKYhZbXP8+HGtVq3aVZ/PHfbs2aNt27Z1yz74elnyY+Y+2PE5dMKECTpu3Dht27at8X7Kyclx6z44vywJCQnXvKjDrJqJi4vTsmXL6vDhw3XJkiXapk0b444Ndrtdt2/fru3atXNLzRSU5+GHH75m25hVN3FxcRoYGKgPPvigPv300xoaGqqNGzc2OkJ//fVXt72f8svStGlTXbRoUYG/Y+b7Ca5FBwlMFRMTo927dzfu/WeWtLQ0ffzxx/Wxxx7TxYsXq81m0/HjxzsduHJycnTZsmUaHBysVapU0bCwMA0JCTF6n92RJ28nSd6DS2xsrE6dOlXLlCljnPB1hXPnzmnnzp2dTmqoqrZv315HjhzptCw1NVUnTJigTzzxhI4YMcJp3gl35snbLt9995326NFDg4ODXd7BdubMGW3Xrp1xj3/Ha0dFRemWLVt0z549um3bNn3rrbfU19dXa9SooQ0bNtSKFSu6LUuXLl30l19+MeYCcDh06JBOnz5dAwMDTXtvZWdn6+nTp7VOnTp64sQJ/eyzz7R58+Y6dOhQveeee/Shhx7S1NRUHTdunKk1c708Tz75pLZu3Vr79Omjqqrr1683rWYSEhI0ODhYo6KijEyjR4/Wrl27ar169fTNN9/UH3/8URcuXGh6zVwrT/fu3TUsLEzfeOMNp6uXDx8+bGrdZGRk6N/+9jfdtWuXZmdna1RUlDZv3lxLlSqlLVu21H/+85/GugsXLtRJkybp888/b8oJ1IKylC5dWlu1auWU5auvvtJOnTpplSpVTNlOMTEx6ufnp1OmTFHV3GNR3759tVmzZsY6p06d0tmzZ6uvr6/WrFnTtLopKEvz5s2NdfKetDS7ZpYuXart27d32u9369ZNly5dqh988IH++OOPxnKza+ZaWZYtW6Y//PCDsdzsmlFV7dSpk3Ey0NHhOWHCBH3ggQe0WbNmunjxYlXNvQWEme1yvTx9+vTRpk2b6muvvaaqquvWrdPIyEhT28YhMzNTBw0apE8++aSx7ODBg9qvXz9t3ry5cSuDvXv36oABA7RixYpap04drV+/vss/+10rS6tWrZxu86qq+ssvv+ioUaM0MDBQo6OjXZolMTFRW7durR07dtQKFSrogw8+mG8nSXJyso4dO1br1q2rd911l7Zs2dLl2+xGszisX79ehw8frmXLli3wwpm/4tixY1qrVi2dMGGCsa977733NCgoyHj/2O12jY6O1oEDB5paM9fK4rgYJS8za+bIkSNavXp1Y64pVdUXXnhBn3nmGafRlnv37tX+/fub2i7Xy5PfXEZmto1DTEyMPvroozpr1iwNCQnRl156yWmE54EDB/Thhx82vW0KypLf3QfMbpcDBw6on5+fTp06VVVz55lau3atvvPOO/rZZ58Zo1FjY2NN3wdfK8sXX3zhNL+Eqvlt8+WXX2q3bt2MLFOnTtVevXrp448/ritWrFDV3M+qo0aNMnUffK0sTzzxhC5btsxpXbP3wTt27NAyZcoYn0NXrlypAQEB+vPPPxvruGsffL0sV3bim1kzFy9e1F69ejmdC/jiiy+0d+/empCQYOyH3VUz18qTlJTk9H6y2+2m1s2FCxc0KipKJ0yYYCxz3Ha7YsWK+uqrrxrrjR492tS2uVaWoKAg4+I3B7PfT3A9OkhgOjNu9XClixcv6uLFi42h6atXr863k0RV9ejRo7px40b95ptvjMm13JnnypEkR48e1S5dumjNmjVdvuNMTEzUFi1a6KZNm1T1zwP9kCFDdODAgaqqThPXO1zrqj6z8zjY7XY9ePCgTpw40ZjQypXOnj2rs2fPdvoS+uKLL6rNZtOGDRtqtWrVtEuXLsZ8IKtXr9ZVq1aZcpu4a2Vp3LixhoaGalRUlP7888966NAh7dmzp1avXt3UA63jJOHAgQN1/fr1qpp74qtChQpaqlQppxPMqubVzI3kKV26tDEk+uDBgzphwgRTaiYhIUF79+6t4eHhumbNGu3SpYt26tRJn3vuOX3mmWf0zjvv1CeeeELT0tI0JibG1Jq5Xp7hw4drjRo1dOjQoXr8+HGNi4szvW4SExO1YsWK+t13ZS9lfgAAEWtJREFU3+mYMWM0KipKY2Ji9JtvvtHx48drcHCw8aXQbDeS5eOPP1bV3FF0L7/8smknl7dt26bTp09X1T/fJ7/99psGBARcdbWR2XVzrSxvvfWW07ruqJklS5ZozZo1jS8ws2bNUpvNppGRkRoeHq6VKlW66pYdZrlWlubNm2ulSpWM/YyZNWO32zU9PV3btm2rgwcPNk4wnThxQu+44w7917/+pYMGDdK2bdu6/LX/Sp4OHTqoqvnvpyvde++9OmzYMCOrau7Vso899pi2adNGv/76a2Pdffv26cmTJ6/6HOaOLG3btjVulREfH6+zZs3Spk2bmjLi55tvvtGHH35Yt2/frlu3btVy5cpds2PixIkT+scff7j89q43m+XChQs6f/58bdWqlUsvFnLIycnROXPmaJcuXfT8+fPGcscojvxq1qyaudksJ06cMK1msrOz9f+1d+8xVdYPHMfPA1hTFBS3QpxGgYK6NC1S3LKzoyiJTTFvK7EUhpBGsqggIUcXLS9buWhtaGnpgC7WWhtlzaC5YmmmTiK8YMnwCublAHJun98f5/c8nYMHORjf53wP5/P6q6Gu93iec57L93m+302bNiE7O9ttu2RkZCAxMREJCQnIzMzU7bPkTU9WVpb2eTp79qzQz5Pq8OHDGDVqFBwOB4qLizFixAi88847mDt3rnZcBcR/z9yqJTU1VRtUEv09Y7VakZOTg6FDh2rnU7Nnz8b48eMRHR2NoKAgzJ8/3+2zLOp3403LwoULteO76N8N4FxUfMqUKQCAGTNmwGg04vnnn0dSUhImTJig3ZQHxH4Hd9fywAMPaPtMW1sb3n33XWHfwWazGaGhodo6fKrp06fDZDJ5XD9N1D7T0xaR38GA85jwyCOPoLi4WPtZXl4eoqOjMXz4cBiNRrcBY9H7THc9JpMJ+fn5AJz3+kQeu1tbW5GQkKBdQ6pvsy9cuBDTp0/HlClTUFlZqf39pqYmYb+b7lqmTp2qHSuvXbsm9PNEYnCAhPoM14WjAOc6CYqiIC8vTzuoWq1WYYvM9qRHfeJIfSr+9OnTwrpcb7qrT10VFhYiLS3N7e+5XoSInCvc2x71gNN5YcbedO3aNe2/1cWSKyoq0NLSgqqqKjz00EPa9AKi3aqluroaCQkJKC4uhsViwb59+4Qu+O1q2bJl2glQeno6hgwZgrFjx2LFihVuC5CJ3Ge87VEXZBS5z5w9exbLli1D//79kZSU5Pb04K5duxAeHi5sLu6e9uzevRuDBw/WThp//PFHofuNw+HAkiVLsHr1asyZM0cbyAKcF6NLly5FVlYWrFardnNe1H7jTcvKlSs9PokqmsPhwJUrV7Sp6dTfh+hBRm9abDab1tHR0SF8n2loaMDUqVMRGxuLJ554Aoqi4KuvvoLD4cCFCxeQk5MDo9GIS5cuCd9nvG0RMUWJJ/v370dQUBCmTZuGtLQ0hIaGIiMjA4BzKoFBgwahrq7ullOj6dkzcOBAtzfWRLPZbLBYLFi+fDkWLFiAGzduuD3wcerUKSQmJmLRokXavxH1O/K2ZfHixVrH+fPnha1LdfHiRbe3r3755RdtYML1Zrynm1G+alE5HA4h01GqqqurtXMIld1uR3R0tFunHnracvHiRWE33RsbG93O6V5//XUEBwdj7dq12Lp1KxISEmAymbRpcER/33jbo34fi/w8uZo5c6Z2TNy4cSNCQ0MRHh7udo6h17G8q5bvvvsOgHMbnTt3Tujv5fjx48jMzMSUKVMwYsQIzJ49G3V1dWhra8PBgwcxfPhwt+s70deX3bUsW7ZM6xC9z3z//fcwmUzYtm0bkpKStIcyr1y5og1YeJom2Fct6vH7xo0bwm66A3A7p1TPX0pLSzF69GjtDRG73a7tKyL3GW9bVKL2GbvdjqtXr2LWrFlITU1FSUkJCgoK0L9/f3z00UeorKxEcXExJk2ahD179tzU5csedaBa1H6jnoNHRUVpbyoDzmPE2LFjsXPnTowfP147H1X/jQi309LR0SH080S9jwMk1OfYbDbti1G90fziiy+iqakJubm5mD9/Psxms243dLvrmTdvnrBFtl25HkjXrl2rTcsDAOvXr8eWLVt0uVj2tmfz5s269vz11183vbqbkpKCOXPm6NbQXcvjjz+uW4O6z+7YsQPr1q1DdnY2hg0bhoaGBuzZswcxMTHIysryuNC1r3pWrlypy2epqakJBQUF2kJrrt8lsbGxyMvLE97Qk56ezDn8Xx04cAChoaFQFOWmxepfeOEFTJs2TbfvXplaPPniiy+gKIrbtAKB2NLQ0ICKigqsW7cOCxYscPuzt956CxMmTNDlcy1bC+B842fp0qXIyMjQptQCnNMcjBkzxuMN5r7e03kAvKqqCsHBwW5TWKl/p6qqCkFBQUKnouxpi6h1urp6MEA916qpqXF7e8NiseD999/H3r17pWgpKSkR0nKrHvX73263495773X7///www9CBkNvp2Xv3r3C3tTwpLm5GWvWrHF7IvePP/6AoihuP5Ohx/WtFj1ajEajNiVReno6wsLCEBkZiY0bN960WLovW0TNkOCp5+TJk0hLS0NKSspNbz59/fXXUBQF9fX10rSIeruxc0tdXR2ioqIwduxYzJgxw+3Pzpw5gwEDBgh7q/p2Wnbv3i2kpXOPp/Pu69evY8SIEVi1apWwhv/SIvLhClc1NTVITk7Gk08+ibi4OGzfvl37s/Pnz2PkyJHYsGGDkBbZejq3vPfee1AUBStWrEBhYSEGDhyoTWn62WefITo6Gs3NzUIGjmRqIfE4QEJ9kuuTe+Xl5ejXrx/i4uIQEhLik/n/btUjeo7uzh2Ac0DiscceAwAUFRVBURRhc/b6U4/Kbrejvb0dixcvxptvvumzDhlaqquroSgKIiMjcfDgQe3nX375JRoaGgK25+rVq27TBzocDjQ3NyMxMVHoRcbt9OzatUvXlp9++gmKomDOnDluNyZzcnKQkZGh61sbMrV01tHRgZkzZ+Kpp55CW1ubzzpkaSktLUVKSorbfpybm4u5c+fe9EZmILV4ujDPy8uD0Wi85VoOfbGnvr4emzdvvmmRy82bNyMoKAilpaVuP//tt98wZswYIW9B+UNLZ+oUV4sWLcLy5cvRr18/nDx5ss+2dNXjug9brVaYzWbExsaipqYGAFBQUABFUXr9hrfsLa7Ut7jV65ejR49i0qRJwqYJkanHU4t6rvDyyy/jk08+wXPPPYeoqCg0NDRg/fr1GDBgALZs2dLrbzDL1NJVD+CcSrCyslJrU/frzz//HPHx8UKeoPaHlm+++QYhISG466678PPPP2s/7+jogMlkcnvzqC+23KpHpe6nJSUliImJcbu2C8QWs9kMm82GxMREVFRUaD+3WCxISkrSHk7p7UEbmXo8tdjtduzYsQMJCQlITk7W1h0BnGvxTZw4UchAlkwtpA8OkFCf5XA4tC8nk8mEiIgIn87/J0OPOkizbt06ZGZmYtOmTbjzzjuFLSLobz2uioqKMHLkSI8LZQZSi8Viwfbt27X5Vn19wJetx9Wrr76KUaNGCVtzpKd82VNdXY2oqCg8/PDDSE9PR1paGsLDw4U9Pe0vLZ1t2LABYWFhOHfunK9TfN5SW1uL8PBwbNy4ER9//DFeeuklDB482CfHbZlaXB09ehTPPvsswsLCfPoQgS96Tpw4gYiICCiKgoKCArcn6ltbW1FcXAxFUVBYWIhDhw6hpaUF+fn5iI2N7fU3AfylxZP9+/dDURRERET0+rmWTC3e9qgPoag3w1577TWEhoZqU3YGWktX09q88sormDx5spC3amTq6W47ffjhh1AUBcOGDcOBAwe0n7/99tu9fo4uU4s3PV0Nns+aNavXB8/9qaWsrAxBQUGYNWsWysrKcOLECeTn5yMqKgpnzpzpsy3e9LhSp0FzfTs1EFvsdjvMZjMmT56MoqIi/PPPP7h+/TqKioq0mRP6ck9326m9vf2m2StWr16NBQsWoL29vVfvC8jUQvrhAAn1aTabDbm5uVAURejCff7Woy4+Gx4e7nZSzR7g008/xapVqzB06FBd3+6RuUW2V0Rl6ykrK0NmZiaGDBni831Gpp4///wThYWFmDFjBrKzs306ICFTC/Dvxfvly5fx4IMP6ramkOwt+/btQ0xMDEaNGgWj0ejT46RMLYBzfuc9e/ZgyZIlPm/Ru8dsNmPFihV45plnUFJSok1V6npz1G63Y+fOnYiMjMTw4cMRHx+PqKioXr/x7g8tXd346ejoQFZWFgYNGoTa2to+23I7PRMnTkRCQgLuuOOOXj8P9eeW2tpaFBYWIiwsTMjnXKYeb1rq6+tRWFiozUYg6nxUphZve1xvBh47dgxr165FWFhYrz9Y4G8tgHPKvsTERNx9992Ij4/H6NGje/38XKaWnvS4evrppxEXFweLxdKrN5f9saWiogKKomD06NGYPHky7rnnHp9uJz16evrZrqurw5o1azBo0CCff8+IbCF9cYCE+jSbzYZt27b5ZFotT2TpOXDgABRFEXJRejtk6jl27BgWLVqk62Kz/tBCXTty5AhSUlKEzXPfU7L1+GoBck9kagGcJ9d6T9nUFVlaWlpacP78eSkWNZSpBXAOSsiwjVR69bS1taGkpATl5eUA/r1Q7zwwATgXXa2urkZlZaWQefj9pcXTjZ9ff/0V48aN6/U3EmRr6UmPzWZDS0sLwsPDERwcLOTGhj+2AM6pilJTUzFmzBhhb4jJ1ONtizrdFyDuLWaZWnrSAzi/95KTk3HfffcJud7115bm5mYcP34cv//+u5A1hWRq6WmPuu/W1NQIeUPCX1v279+PN954Ax988IGwh5dk6ulJy7Vr17B161Y8+uijPv9si24hfXGAhPo82V5vk6VHppssgFw9vlyXoDOZWqhrrmsVyEC2HiKi/6LzOUJ5eTkURUFeXp52sWq1WvH333+z5f8tzc3NAJwDw+r0KZcvXw6IFm97rFYrLl26hG+//VboQwX+1mKz2XDhwgU0NjaisbFRWItsPbdqUQdA7Xa7LmveydTSXY/rdrp48SJOnz4t9PvP31qsVqsub+fK1OJtj91ux6lTp9jS6RzCYrEIG7ySuacnxwOr1erzcxq9Wkg/HCAhIiIiIiLp2Ww27UGTsrIy7Ym+pqYm5ObmYv78+TCbzbo8jOJPLfPmzUNbW5vwDtlavOlJTU11exKfLf9up/b2dl1aZOvx5rMty3bSs8WbHpm2k0wtMh0P9Gzxtqe1tVWa340sLampqVJtJz17ZDqPkKmFxOMACRERERER+QWHw6FNlVdeXo5+/fohLi4OISEhuk9v4C8teq9HJVPLrXqCg4Ol2U4ytci2nWTbh2XaTr6Y0sVftpNMLdxn5Olhi3/0+MtnW4b1R6n3KABgICIiIiIi8gPq5YuiKIbp06cbDh8+bKiqqjLcf//9bGGL9D1s8Y8etvhHD1vkb5Gthy3+0cMW0p2eozFERERERET/lc1mQ25uLhRFwZEjR9jCFr/qYYt/9LDFP3rYIn+LbD1s8Y8etpCegnw9QENERERERNRT48aNMxw6dMgwfvx4X6ewxQ9aDAa5etjSNZl62NI1mXrYIn+LwSBXD1u6JlMPW0gvnGKLiIiIiIj8DgCDoii+zjAYDGzpikwtBoNcPWzpmkw9bOmaTD1s8UymFoNBrh62dE2mHraQXjhAQkREREREREREREREAYdTbBERERERERERERERUcDhAAkREREREREREREREQUcDpAQEREREREREREREVHA4QAJEREREREREREREREFHA6QEBERERERERERERFRwOEACRERERERERERERERBRwOkBARERERERERERERUcDhAAkREREREREREREREQUcDpAQEREREREREREREVHA4QAJEREREREREREREREFnP8B6ozvkfouQ60AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# fig,(ch0_ax,ch1_ax) = plt.subplots(2)\n", "fig, axes = plt.subplots(2, 1)\n", "axes[0].bar(hist_bins, cutoff_hist0, width=bin_width, label=\"channel 0\")\n", "axes[1].bar(hist_bins, cutoff_hist1, width=bin_width, label=\"channel 1\")\n", "# axes[0].set_yscale('log')\n", "# axes[1].set_yscale('log')\n", "\n", "axes[0].set_xticks(np.arange(hist_bins.min(), hist_bins.max(), step=50))\n", "axes[1].set_xticks(np.arange(hist_bins.min(), hist_bins.max(), step=50))\n", "axes[0].tick_params(axis=\"x\", labelrotation=45)\n", "axes[1].tick_params(axis=\"x\", labelrotation=45)\n", "\n", "print(np.sum(hist0))\n", "print(np.sum(hist1))\n", "\n", "axes[0].plot(hist_bins, ch0_gaussA, \"g\", label=\"GaussianA\")\n", "axes[0].fill_between(hist_bins, ch0_gaussA.min(), ch0_gaussA, facecolor=\"green\", alpha=0.5)\n", "axes[0].plot(hist_bins, ch0_gaussB, \"y\", label=\"GaussianB\")\n", "axes[0].fill_between(hist_bins, ch0_gaussB.min(), ch0_gaussB, facecolor=\"yellow\", alpha=0.5)\n", "\n", "\n", "axes[0].legend()\n", "axes[1].legend()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.10" } }, "nbformat": 4, "nbformat_minor": 4 }